Rules for Finding the Base of a Exponential Function?

Click For Summary
SUMMARY

The discussion focuses on identifying the base of exponential functions, specifically examining functions such as $$f(x)=7^x$$, $$f(x)=3^{2x}$$, and $$f(x)=8^{\frac{4}{3}x}$$. The base of $$f(x)=7^x$$ is definitively 7, while $$f(x)=3^{2x}$$ has a base of 9, derived from the expression $$3^{2x} = (3^2)^x$$. The function $$f(x)=8^{\frac{4}{3}x}$$ simplifies to $$16^x$$, indicating a base of 16, achieved through the transformation using the laws of exponents.

PREREQUISITES
  • Understanding of exponential functions
  • Familiarity with laws of exponents
  • Ability to manipulate algebraic expressions
  • Knowledge of base conversion in exponential forms
NEXT STEPS
  • Study the laws of exponents in depth
  • Practice converting between different bases in exponential functions
  • Explore the properties of exponential growth and decay
  • Learn about logarithmic functions and their relationship to exponentials
USEFUL FOR

Students, educators, and anyone interested in mastering exponential functions and their properties, particularly in algebra and precalculus contexts.

RidiculousName
Messages
28
Reaction score
0
I was wondering if anyone could point me to a set of rules for finding the base of an exponential function? I can figure out that the base of $$f(x)=7^x$$ is 7 and the base of $$f(x)=3^{2x}$$ is 9 but even though I know $$f(x)=8^{\frac{4}{3}x}$$ has a base of 16, I don't know how that answer was reached.
 
Mathematics news on Phys.org
You could write:

$$f(x)=8^{\Large\frac{4}{3}x}=\left(8^{\Large\frac{4}{3}}\right)^x=\left(\left(8^{\Large\frac{1}{3}}\right)^4\right)^x=\left(2^4\right)^x=16^x$$
 
RidiculousName said:
I was wondering if anyone could point me to a set of rules for finding the base of an exponential function? I can figure out that the base of $$f(x)=7^x$$ is 7 and the base of $$f(x)=3^{2x}$$ is 9 but even though I know $$f(x)=8^{\frac{4}{3}x}$$ has a base of 16, I don't know how that answer was reached.
Actually, the base of [math]3^{2x}[/math] is 3! Of course that is the equal to [math](3^2)^x= 9^x[/math] which base 9. [math]f(x)= 8^{\frac{4}{3}ax}[/math] has base 8. Using the "laws of exponents", [math]8^{4/3}= (8^{1/3})^4[/math] and, since [math]2^3= 8[/math], [math]8^{1/3}= 2[/math] so [math]8^{4/3}= 2^4= 16[/math] so that [math]8^{\frac{4}{3}x}= 16^x[/math].

But, again, I would say that the bases have changed. The base in [math]8^{\frac{4}{3}x}[/math] is 8 and the base in [math]16^x[/math] is 16.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K