MHB Proof of Product Formula by Induction: Ruslan's Question on Yahoo Answers

AI Thread Summary
The discussion focuses on proving the formula $$\prod_{k=0}^n\left(1+x^{2^k} \right)=\frac{1-x^{2^{n+1}}}{1-x}$$ using mathematical induction. The base case for n=1 is verified, showing that the left side equals the right side. The induction step involves multiplying both sides by $$\left(1+x^{2^{n+1}} \right)$$ and simplifying to demonstrate that if the formula holds for n, it also holds for n+1. The proof successfully shows that the hypothesis is maintained through the induction process. Thus, the formula is proven for all natural numbers n.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Please help to prove by induction?

Please explain me how to prove this by induction. Thanks a lot!

Use the fact that $$(x+y)(x-y)=x^2-y^2$$ to prove by induction that:

$$\prod_{k=0}^n\left(1+x^{2^k} \right)=\frac{1-x^{2^{n+1}}}{1-x}$$

for any $$n\in\mathbb{N}$$ and any $$x\in\mathbb{Q}$$ with $$x\ne1$$.

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Ruslan,

First, we want to show the base case $P_1$ is true:

$$\prod_{k=0}^1\left(1+x^{2^k} \right)=\frac{1-x^{2^{1+1}}}{1-x}$$

$$\left(1+x^{2^0} \right)\left(1+x^{2^1} \right)=\frac{1-x^{2^2}}{1-x}$$

$$\left(1+x \right)\left(1+x^2 \right)=\frac{1-x^4}{1-x}=\frac{\left(1+x^2 \right)\left(1-x^2 \right)}{1-x}=\frac{\left(1+x^2 \right)(1+x)(1-x)}{1-x}=\left(1+x^2 \right)(1+x)$$

Thus, the base case is true. Hence, we state the given hypothesis:

$$\prod_{k=0}^n\left(1+x^{2^k} \right)=\frac{1-x^{2^{n+1}}}{1-x}$$

As our induction step, we may multiply both sides by $$\left(1+x^{2^{n+1}} \right)$$ to obtain:

$$\prod_{k=0}^n\left(1+x^{2^k} \right)\cdot\left(1+x^{2^{n+1}} \right)=\frac{1-x^{2^{n+1}}}{1-x}\cdot\left(1+x^{2^{n+1}} \right)$$

On the left side, incorporate the new factor into the product, and on the right carry out the indication multiplication:

$$\prod_{k=0}^{n+1}\left(1+x^{2^k} \right)=\frac{1-\left(x^{2^{n+1}} \right)^2}{1-x}$$

On the right apply the property of exponents $$\left(a^b \right)^c=a^{bc}$$ to obtain:

$$\prod_{k=0}^{n+1}\left(1+x^{2^k} \right)=\frac{1-x^{2\cdot2^{n+1}}}{1-x}$$

Now, on the right apply the property of exponents $$a\cdot a^b=a^{b+1}$$ to obtain:

$$\prod_{k=0}^{n+1}\left(1+x^{2^k} \right)=\frac{1-x^{2^{(n+1)+1}}}{1-x}$$

We have derived $P_{n+1}$ from $P_{n}$ thereby completing the proof by induction.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top