malawi_glenn said:
That is true, which I mentioned. But overall, it is a small percentage.
If I had to guess, I'd put it about about 20%-30% of hep-ph (and maybe 10-15% of hep-ex).
(Note that I guessed the percentage before doing the count below.)
It may not be an insurmountable problem, but it is pretty significant.
These recent examples (selected based upon the Op-Ed criterion, I'm sure I may have missed one or two and may have misclassified one or two but it is pretty close to the mark) make up 38 of the last 160 (23.75%) of "recent" hep-ph papers at arXiv:
arXiv:2209.15544
Constraining extended scalar sectors at current and future colliders -- an update
arXiv:2209.15098
Quark mass generation due to scalar fields with zero dimension
arXiv:1703.08798
Light axion-like dark matter must be present during inflation
arXiv:2209.14882
Light thermal relics enabled by a second Higgs
arXiv:2209.14870
Sensitivity of the FACET experiment to Heavy Neutral Leptons and Dark Scalars
arXiv:2209.14867
Dilaton Effective Field Theory
arXiv:2209.14659
Heavy Neutral Leptons Beyond Simplified Scenarios
arXiv:2209.14605
Gravitational wave signals from leptoquark-induced first order electroweak phase transitions
arXiv:2209.14404
SM Extension With Gauged Flavor U(1)F
arXiv:2209.14343
Sommerfeld enhancement of resonant dark matter annihilation
arXiv:2209.14318
Analytic approach to ALP emission in core-collapse supernovae
arXiv:2209.14305
Relic Challenges for Vector-Like Fermions as Connectors to a Dark Sector
arXiv:2209.14268
Asymptotically safe dark matter with gauged baryon number
arXiv:2209.14246
The Type II Dirac Seesaw Portal to the mirror sector: Connecting neutrino masses and a solution to the strong CP problem
arXiv:2209.13888
Exploring maverick top partner decays at the LHC
arXiv:2209.13755
One-loop calculations for H→ff¯γ in the U(1)B−L extension for Standard Model
arXiv:2209.13653
A two-component vector WIMP -- fermion FIMP dark matter model with an extended seesaw mechanism
arXiv:2209.14061
Bounds from multi-messenger astronomy on the Super Heavy Dark Matter
arXiv:2209.13588
NASDUCK SERF: New constraints on axion-like dark matter from a SERF comagnetometer
arXiv:2209.13572
Probing Axions via Light Circular Polarization and Event Horizon Telescope
arXiv:2209.13566
Non-standard neutrino interactions in light mediator models at reactor experiments
arXiv:2209.13469
Probing right-handed neutrinos dipole operators
arXiv:2209.13466
Signatures of excited monopolium
arXiv:2209.13389
Family Non-universal Z′ Effects on Bd,s→K∗0K⎯⎯⎯⎯∗0 Decays in Perturbative QCD Approach
arXiv:2209.13266
Global fits of simplified models for dark matter with GAMBIT I. Scalar and fermionic models with s-channel vector mediators
arXiv:2209.13093
Top partners and scalar dark matter -- a non-minimal reappraisal
arXiv:2209.12947
Anomalous and axial Z' contributions to g-2
arXiv:2209.12909
Axion detection with phonon-polaritons revisited
arXiv:2209.12901
Discovering QCD-Coupled Axion Dark Matter with Polarization Haloscopes
arXiv:2209.13445
Improved Mixed Dark Matter Halo Model for Ultralight Axions
arXiv:2209.12802
Search for Majoron at the COMET Experiment
arXiv:2209.12780
Drell-Yan production in third-generation gauge vector leptoquark models at NLO+PS in QCD
arXiv:2209.12552
Neutron Star Heating in Dark Matter Models for Muon g-2 with Scalar Lepton Partners up to the TeV Scale
arXiv:2209.12281
The anomalous shift of the weak boson mass and the quintessence electroweak axion
arXiv:2209.12121
On the W mass anomaly in models with right-handed currents
arXiv:2209.12063
On the viability of a light scalar spectrum for 3-3-1 models
arXiv:2209.11780
Probing high-energy solar axion flux with a large scintillation neutrino detector
arXiv:2209.11773
Strong Supernova 1987A Constraints on Bosons Decaying to Neutrinos