Safety Injection during Main Steam Line Break

Click For Summary
SUMMARY

Safety Injection (SI) is critical during a Main Steam Line Break (MSLB) as it compensates for the rapid loss of water volume in the Reactor Coolant System (RCS) due to cooling and increased water density. The SI system maintains pressurizer stability by injecting water, preventing pressure loss and potential reactor criticality. In scenarios where extraction steam is lost, feedwater heaters cannot adequately heat the feedwater, leading to decreased steam generation and potential reactor power increases due to the negative moderator temperature coefficient. Understanding these dynamics is essential for nuclear engineering and plant operation.

PREREQUISITES
  • Knowledge of Reactor Coolant System (RCS) dynamics
  • Understanding of Safety Injection (SI) systems
  • Familiarity with steam generation processes in Pressurized Water Reactors (PWR)
  • Basic principles of thermodynamics related to steam and water density
NEXT STEPS
  • Research the operation and design of Safety Injection systems in PWRs
  • Study the effects of steam line breaks on reactor operations
  • Learn about the thermodynamic principles governing steam generation and feedwater heating
  • Investigate the protocols for handling steam generator tube ruptures
USEFUL FOR

Nuclear engineers, plant operators, and students in nuclear engineering courses seeking to understand the integration of reactor systems and the implications of steam line breaks on reactor operations.

  • #61
For a Large Break LOCA the RCS would depressurize to the point where Accumulators discharge (about 600 psia) and ultimately where Low Pressure Safety Injection can take place (about 300 psia). Both of these systems would replenish inventory and provide boron.

For a Small Break LOCA, HPSI and charging are more important as the RCS pressure will level off above Accumulators and LPSI. This is Functional Recovery territory. I would first try heat removal with the SGs while sending someone to vent/start the HPSI pumps. If that is insufficient, the RCS would have to be depressurized using pressurizer relief valves. The idea would be to get the RCS pressure low enough for Accumulators/LPSI.

You are talking about losing 2 or 3 HPSI pumps and 2 or 3 Charging Pumps. Its hard to believe that the pump that had the most recent surveillance would be gas bound.

Can I ask what your background is? You sound like an engineering student.
 
Engineering news on Phys.org
  • #62
FermiAged said:
For a Large Break LOCA the RCS would depressurize to the point where Accumulators discharge (about 600 psia) and ultimately where Low Pressure Safety Injection can take place (about 300 psia). Both of these systems would replenish inventory and provide boron.

For a Small Break LOCA, HPSI and charging are more important as the RCS pressure will level off above Accumulators and LPSI. This is Functional Recovery territory. I would first try heat removal with the SGs while sending someone to vent/start the HPSI pumps. If that is insufficient, the RCS would have to be depressurized using pressurizer relief valves. The idea would be to get the RCS pressure low enough for Accumulators/LPSI.

You are talking about losing 2 or 3 HPSI pumps and 2 or 3 Charging Pumps. Its hard to believe that the pump that had the most recent surveillance would be gas bound.

Can I ask what your background is? You sound like an engineering student.

So basically, for small break LOCA, loss of HPSI/charging is more severe because the RCS pressure doesn't drop enough to allow other remedial operations to initiate?

What about my guesses of losing boron injection and RCP seal injection? It seems from your description that you only lose boron injection on a small-break? Are either of these major concerns that could result in further damage, or are they minor compared to pressure concerns?

And yes, I am an engineering student. I am currently halfway through grad school, on my way to a masters degree in mechanical engineering. Just took a nuclear engineering course out of curiosity and now realized that one course can't even cover the BIG picture items that I would like to know. I really am trying to learn the components of the plant and how they interact. (If situation A happens, what happens to B, C, and D) type of stuff..
 
  • #63
FermiAged said:
For a Large Break LOCA the RCS would depressurize to the point where Accumulators discharge (about 600 psia) and ultimately where Low Pressure Safety Injection can take place (about 300 psia). Both of these systems would replenish inventory and provide boron.

For a Small Break LOCA, HPSI and charging are more important as the RCS pressure will level off above Accumulators and LPSI. This is Functional Recovery territory. I would first try heat removal with the SGs while sending someone to vent/start the HPSI pumps. If that is insufficient, the RCS would have to be depressurized using pressurizer relief valves. The idea would be to get the RCS pressure low enough for Accumulators/LPSI.

Also, do accumulators deliver boron when there is a loss of all power?
 
  • #64
Yes. They are essentially tanks of borated water driven by a charge of nitrogen (at a typical pressure of about 650 psia). They discharge to the RCS through check valves (like a door that only swings one way) that are closed or opened by the differential pressure across the valve. Under normal operating conditions the RCS pressure of 2250 psia keeps them closed. When RCS pressure falls below 650 psia, the valves open and the tanks discharge based upon the RCS pressure and level in the tank (which determines the elevation head and N2 pressure).

The accumulators (a Westinghouse term - CE designed plants call them Safety Injection Tanks - I don't know what B&W calls them) require no electrical power to function. Because there is no pump that requires time for power source alignment, start signal and start up, the accumulators can be the first source of safety injection in some accidents.
 
  • Like
Likes   Reactions: 1 person
  • #65
That is what I figured. Thanks for confirming!
 
  • #66
RCP seal cooling used to be PWR's Achilles heel.
Westinghouse came up with an improved one that's passive, but it was after I'd retired so I never saw one.. That would seem to be be a comfort.

http://www.westinghousenuclear.com/Products_&_Services/docs/flysheets/NS-FS-0106.pdf

We added some fittings (I think back in the 90's) whereby one could connect a portable diesel driven pump to cool the seals should the unthinkable happen.
 
Last edited by a moderator:

Similar threads

Replies
40
Views
7K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K