How Can I Use Stokes' Theorem to Show Integral of fgrad(g)*dr=0?

Click For Summary
To demonstrate that the integral of f grad(g) * dr equals zero using Stokes' Theorem, it is essential to understand the relationship between the gradients of f and g. The condition that grad(f) is perpendicular to grad(g) x n implies that their dot product is zero, which is a key aspect of the problem. The discussion emphasizes the importance of vector identities, particularly that curl(grad(f)) equals zero, and how to apply these identities to relate the fields involved. It clarifies that curl(f grad(g)) must be computed to connect the two different fields in the context of Stokes' Theorem. Ultimately, the integration over the boundary will yield a result of zero based on these relationships.
JaysFan31

Homework Statement


Let S be a simple parametrically defined surface with boundary C as in Stokes' Theorem. Let f and g be two continuously differentiable scalar fields defined on S. Let n be a choice of unit normal on S. If grad(f) is perpendicular to grad(g) x n everywhere on S, show that integral of fgrad(g)*dr=0.
Note: x is cross product and * is dot product


Homework Equations


Stokes' Theorem:
integral of F*dr=integral of curlF*ndS


The Attempt at a Solution


I'm pretty confused on this one.
First off, what does the perpendicular part mean? What does it tell me? Doesn't it just tell me that the cross product exists everywhere? How does this information help me solve the problem and show that the integration equals zero?
 
Physics news on Phys.org
You do not know what "perpendicular" means? It means here exactly what it means in elementary geometry- that the two vectors are at right angles to one another. What you are really asking is "What does it tell me". No, it does not tell you that the cross product exists everywhere! As long as the two vectors exists, their cross product exists. What it tells you is much simpler than that: that the dot product of the two vectors is 0.
 
To solve this (and the last post) all you need are some vector identities. Here they are at no extra charge. f is a scalar, a,b,c are vectors. (. is dot, * is scalar multiply).

curl(grad(f))=0
a.(bxc)=b.(cxa)=c.(axb)
curl(f*a)=grad(f)xa+f*curl(a)

I'm not charging for this service because I'm sure you already had them.
 
Ok. So I get that
grad(f) . (grad(g) x n)=0 where x is cross product and . is dot product since the vectors are perpendicular.

Using the second identity shown,

n . (grad(f) x grad(g))=0.
This equals (grad(f) x grad(g)) . n=0.

How do I show however that (grad(f) x grad(g))=fgrad(g) to make it work?
 
They AREN'T equal. Use one of your free identities to compute curl(f grad(g)). The point to Stokes is integrating curl(F) over the interior and integrating F over the boundary. curl(F) and F are TWO DIFFERENT FIELDS.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
7
Views
2K