Schwartz's Quantum field theory, (14.100) Fermionic path integral

Click For Summary
SUMMARY

The discussion focuses on the Fermionic path integral as presented in Schwartz's "Quantum Field Theory," specifically around equation (14.100) on pages 269-272. The integral involves Grassmann numbers and external currents, leading to the conclusion that the integral simplifies to the determinant of matrix A. The participants seek clarification on the derivation of this result, particularly how the integral of the exponential form leads to the determinant, referencing earlier deductions in the text.

PREREQUISITES
  • Understanding of Grassmann numbers and their properties
  • Familiarity with Berezin integrals and their applications
  • Knowledge of determinants and their definitions in linear algebra
  • Proficiency in quantum field theory concepts, particularly path integrals
NEXT STEPS
  • Study the derivation of determinants using Grassmann variables
  • Explore the properties and applications of Berezin integrals
  • Review the section on Fermionic path integrals in Schwartz's "Quantum Field Theory"
  • Investigate the role of external currents in quantum field theory calculations
USEFUL FOR

Researchers, graduate students, and professionals in theoretical physics, particularly those specializing in quantum field theory and mathematical physics.

Plantation
Messages
19
Reaction score
1
Homework Statement
$$\int d\bar{\vec{\theta}}d \vec{\theta} e^{-(\bar{\vec{\theta}} - \bar{\vec{\eta}} A^{-1})A( \vec{\theta}-A^{-1}\vec{\eta})} = \operatorname{det}(A)$$
Relevant Equations
$$ \int d\bar{\theta}_1d\theta_1 \cdots d\bar{\theta}_n d\theta_n e^{-\bar{\theta}_i A_{ij} \theta_{j} } = \operatorname{det}(A) \tag{14.98}$$
I am reading the Schwartz's Quantum field theory, p.269~p.272 ( 14.6 Fermionic path integral ) and some question arises.

In section 14.6, Fermionic path integral, p.272, (14.100), he states that

$$ \int d\bar{\theta}_1d\theta_1 \cdots d\bar{\theta}_n d\theta_n e^{-\bar{\theta}_i A_{ij} \theta_{j} + \bar{\eta}_i \theta_{i}+ \bar{\theta}_i \eta_i} = e^{\bar{\vec{\eta}} A^{-1} \vec{\eta}} \int d\bar{\vec{\theta}}d \vec{\theta} e^{-(\bar{\vec{\theta}} - \bar{\vec{\eta}} A^{-1})A( \vec{\theta}-A^{-1}\vec{\eta})}= \operatorname{det}(A) e^{\bar{\vec{\eta}} A^{-1}\vec{\eta}} \tag{14.100}$$

where ##\theta_i## are grassmann numbers ( C.f. His book p.269 ) and ##\bar{\theta}_i## are defined in p.271. And ##\eta_i## and ##\bar{\eta}_i## are external currents.

Q. Why ##\int d\bar{\vec{\theta}}d \vec{\theta} e^{-(\bar{\vec{\theta}} - \bar{\vec{\eta}} A^{-1})A( \vec{\theta}-A^{-1}\vec{\eta})} = \operatorname{det}(A)## ?

In his book, p.271, (14.98), he deduced that
$$ \int d\bar{\theta}_1d\theta_1 \cdots d\bar{\theta}_n d\theta_n e^{-\bar{\theta}_i A_{ij} \theta_{j} } = \operatorname{det}(A) \tag{14.98}$$

Can we use this? How? Or by similar argument for deduction of the (14.98)?
 
Physics news on Phys.org
I've seen the derivation but it has been a while.
  • The first step is to expand the exponential into its power series which will only have two terms since the Grassmann "numbers" are nilpotent.
e^{-\overline{\theta}_i A_{ij} \theta_j} = 1-\overline{\theta}_i A_{ij} \theta_j
(... searching for references...)
  • Next step is to recognize this as a multivariable: Berezin Integral.
  • You will then find the surviving terms are the definition of the determinant in terms of sums of signed permutations of products of entries. (Remembering that the Grassmann variables anti-commute.)
There are additional details but that's the big picture as I recall.
 
jambaugh said:
I've seen the derivation but it has been a while.
  • The first step is to expand the exponential into its power series which will only have two terms since the Grassmann "numbers" are nilpotent.
e^{-\overline{\theta}_i A_{ij} \theta_j} = 1-\overline{\theta}_i A_{ij} \theta_j
(... searching for references...)
  • Next step is to recognize this as a multivariable: Berezin Integral.
  • You will then find the surviving terms are the definition of the determinant in terms of sums of signed permutations of products of entries. (Remembering that the Grassmann variables anti-commute.)
There are additional details but that's the big picture as I recall.
O.K. Again.. How can we perform this integral : ##\int d\bar{\vec{\theta}}d \vec{\theta} e^{-(\bar{\vec{\theta}} - \bar{\vec{\eta}} A^{-1})A( \vec{\theta}-A^{-1}\vec{\eta})} = \operatorname{det}(A)## ? An issue that makes me annoying is the involved objects ##\bar{\vec{\eta}}## (and ##\vec{\eta}##) (external currents). Perhaps can you provided explanation more step by step in detail?
 

Similar threads

Replies
15
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K