• Support PF! Buy your school textbooks, materials and every day products Here!

Second-order Coupled O.D.E.s with constant coefficients

  • Thread starter ab959
  • Start date
  • #1
10
0

Homework Statement



I am trying to solve a system of two coupled ODEs. I am interested in an analytic solution if that is possible. I know it will be messy.

[tex]\frac{\partial^2 U_1}{\partial x^2}+a_1\frac{\partial U_1}{\partial x^2}+b_1 U_1 = c_1 U_2[/tex]

[tex]\frac{\partial^2 U_2}{\partial x^2}+a_2\frac{\partial U_2}{\partial x^2}+b_2 U_2 = c_2 U_1[/tex]


The Attempt at a Solution



I have attempted a few methods although I haven't pursued them too hard as I don't want to head down the wrong path. I found that a Laplace transform was too hard to invert. I tried to represent it as a system of 4 first order equations however the inversion was very very messy. Finally, the method I was thinking of employing was to treat the U_2 in the first equation as an arbitrary function and then exploiting the symmetry to find a solution of U_1/U_2 in terms of something in the form of:

[tex]U_{1,2}=... + \int^x_{x_0} U_{2,1}(\eta)e^{(x-\eta)k}d\eta[/tex]

, where k is a variable in terms of a_1 and b_2. I do not know if this will work and have not done much in this area.

Does anyone have any suggestions as I am beginning to feel a bit out of my depth. Thanks.
 

Answers and Replies

  • #2
Tom Mattson
Staff Emeritus
Science Advisor
Gold Member
5,500
7
Solve the first equation for [itex]U_2[/itex] and plug it into the second equation.

[tex]\frac{\partial^2 U_1}{\partial x^2}+a_1\frac{\partial U_1}{\partial x^2}+b_1 U_1 = c_1 U_2[/tex]

[tex]\frac{\partial^2 U_2}{\partial x^2}+a_2\frac{\partial U_2}{\partial x^2}+b_2 U_2 = c_2 U_1[/tex]
Why is there a "[itex]\partial x^2[/itex]" in the second term of the left hand side of each equation?
 

Related Threads on Second-order Coupled O.D.E.s with constant coefficients

Replies
1
Views
738
Replies
6
Views
2K
Replies
6
Views
956
Replies
2
Views
10K
Replies
2
Views
4K
Replies
3
Views
7K
Replies
4
Views
3K
  • Last Post
Replies
1
Views
2K
Top