Second order differential equation solution

Click For Summary

Homework Help Overview

The discussion revolves around solving a second order linear differential equation, specifically in the context of quantum mechanics as referenced in Griffiths. The equation in question is related to wave functions and their representations in terms of trigonometric or exponential functions.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the method of separation of variables and its applicability to second order differential equations. There are attempts to manipulate the equation through integration and substitution, with some participants questioning the validity of using separation of variables for this type of equation. Others suggest alternative methods such as Laplace transforms.

Discussion Status

The discussion is ongoing, with various participants expressing confusion about the steps involved in reaching the solution. Some have provided partial insights into integrating the equation and suggested trigonometric substitutions, while others have raised concerns about the limitations of the methods being discussed.

Contextual Notes

There is mention of specific chapters from Griffiths' quantum mechanics, indicating a focus on the standard approaches taught in physics curricula. Participants also note the need for clarity on the assumptions and definitions related to the differential equation being analyzed.

Ron Burgundypants
Messages
23
Reaction score
0
Homework Statement
Looking at Griffiths quantum mechanics chapter 2.1 and 2.5, how do we get to the solution to the second order differential equation?
Relevant Equations
(1) d^2Psi/dx^2 = -k^2 Psi
(2) Psi(x) = Asin(kx) + Bcos(kx) || Ae^-kx + Be^kx
(3) (1/Psi) d^2 Psi = -k^2 Psi dx^2
(4) ln(Psi) d Psi = -x k^2 Psi dx + c
I know the solution to the equation (1) below can be written in terms of exponential functions or sin and cos as in (2). But I can't remember exactly how to get there using separation of variables. If I separate the quotient on the left and bring a Psi across, aka separation of variables (as I was taught by physicists), and then integrate once I get (4), but then I'm still left with an operator I need to get rid of. I can of course then exponentiate away the log but then if i integrate again I'm going to get a right mess. So any ideas what to do?
 
Physics news on Phys.org
Ron Burgundypants said:
Homework Statement:: Looking at Griffiths quantum mechanics chapter 2.1 and 2.5, how do we get to the solution to the second order differential equation?
Relevant Equations:: (1) d^2Psi/dx^2 = -k^2 Psi
(2) Psi(x) = Asin(kx) + Bcos(kx) || Ae^-kx + Be^kx
(3) (1/Psi) d^2 Psi = -k^2 Psi dx^2
(4) ln(Psi) d Psi = -x k^2 Psi dx + c

I know the solution to the equation (1) below can be written in terms of exponential functions or sin and cos as in (2). But I can't remember exactly how to get there using separation of variables. If I separate the quotient on the left and bring a Psi across, aka separation of variables (as I was taught by physicists), and then integrate once I get (4), but then I'm still left with an operator I need to get rid of. I can of course then exponentiate away the log but then if i integrate again I'm going to get a right mess. So any ideas what to do?
##y"+k^2y=0##
##y'y"+k^2y'y=0##
Integrate, then trig substitution.
 
I don't understand what you've written or how you get there.
 
Separation of variables is limited to 1st order ODE's (can be non-linear).

You can reduce a 2nd order ODE to two 1st order ones but only if the zero order derivative coefficient is zero. So you can solve y''(x) + y'(x) = A but not y'' + y = A by separation if separation is possible for both 1st order ODE's. There may be other methods I don't know about.

Perhaps haruspex accomplishes this his way but I don't offhand see it either.

This being a linear ODE the best way is Laplace transformation typically encountered in engineering curricula only. All boundary or initial conditions automatically included and very extensive inverse tables readily available. Only way to fly!
 
Ron Burgundypants said:
I don't understand what you've written or how you get there.
Sorry, for some reason I got no alert that you had replied.
You have an equation of the form ##y''+k^2y=0##.
Multiplying both sides by y' gives ##y''y'+k^2yy'=0##.
Both terms are directly integrable:
##\frac 12y'^2+\frac 12k^2y^2=C^2/2##.
##y'=\sqrt{C^2-k^2y^2}##
This suggests a trig substitution, ##y=\frac Ck\sin(\theta)##:
##\frac 1k\cos(\theta)\theta'=\cos(\theta)##
##\theta'=k##.
 
Ron Burgundypants said:
Homework Statement:: Looking at Griffiths quantum mechanics chapter 2.1 and 2.5, how do we get to the solution to the second order differential equation?
Relevant Equations:: (1) d^2Psi/dx^2 = -k^2 Psi
(2) Psi(x) = Asin(kx) + Bcos(kx) || Ae^-kx + Be^kx
I know the solution to the equation (1) below can be written in terms of exponential functions or sin and cos as in (2). But I can't remember exactly how to get there using separation of variables.
The differential equation is a second order, linear,homogeneous one, with constant coefficients.. The usual way of solution is trying the function f(x)=exp(kx) . Substitute into the differential equation, you get the "characteristic equation" for k, a quadratic one. Usually, you get two different roots, either both real, or both complex, imaginary in this case, . The general solution of the ode is linear combination of the two exponential functions, exp(k1x) and exp(k2x), or linear combination of a sine and a cosine function: Asin(kx)+Bcos(kx).
 
haruspex said:
Sorry, for some reason I got no alert that you had replied.
You have an equation of the form ##y''+k^2y=0##.
Multiplying both sides by y' gives ##y''y'+k^2yy'=0##.
Both terms are directly integrable:
##\frac 12y'^2+\frac 12k^2y^2=C^2/2##.
##y'=\sqrt{C^2-k^2y^2}##
This suggests a trig substitution, ##y=\frac Ck\sin(\theta)##:
##\frac 1k\cos(\theta)\theta'=\cos(\theta)##
##\theta'=k##.
Or, easily separable:
$$ \frac {dy} {(c^2 - k^2y^2)^{1/2}} = dx $$ etc.

EDIT: Forget this. We need ## \psi(x) ##, not ## x(\psi) ##.
 
Last edited:

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
2K
Replies
8
Views
1K
Replies
5
Views
1K
Replies
2
Views
2K
Replies
41
Views
5K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K
Replies
17
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K