- #1

- 21

- 0

xy'+y=1/y^2

My Attempt:

P= y'= dy/dx

x dy/dx + y = 1/y^2

dy/dx + y/x = 1/xy^2

Integrating Factor = e^∫1/x dx = e^lnx

y e^lnx=∫ (e^lnx)(1/xy^2) dx

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter jtruth914
- Start date

- #1

- 21

- 0

xy'+y=1/y^2

My Attempt:

P= y'= dy/dx

x dy/dx + y = 1/y^2

dy/dx + y/x = 1/xy^2

Integrating Factor = e^∫1/x dx = e^lnx

y e^lnx=∫ (e^lnx)(1/xy^2) dx

- #2

- 123

- 0

So where are you stuck? What are you doing?

It bothers me a little that you seem to be using an integrating factor on a nonlinear differential equation; typically, multiplying by an integrating factor is something you do when the the DE is linear (this one isn't since you have a y^2 term).

This differential equation is nonlinear, so it must be one of the types that can be solved explicitly (if this is a homework problem). Can it be shown to be exact, homogeneous, or Bernoulli? (Hint: it can.)

Share: