Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Second order mixed derivative and chain rule

  1. Aug 17, 2011 #1
    I want to find the second order derivative for [tex]f(x,y),x(u,v),y(u,v)[/tex], f depends on x and y, and x and y depends on u and v. I'm trying to find [tex]\frac{{\partial^2 f}}{{\partial v \partial u}}[/tex]

    This is what I did:
    [tex]\frac{{\partial f}}{{\partial u}}=\frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial u}}[/tex]

    [tex]\frac{{\partial^2 f}}{{\partial v \partial u}}=\frac{{\partial}}{{\partial v}} \left (\frac{{\partial f}}{{\partial x}}\frac{{\partial x}}{{\partial u}}\right )+\frac{{\partial}}{{\partial v}} \left (\frac{{\partial f}}{{\partial y}}\frac{{\partial y}}{{\partial u}}\right )[/tex]

    Finally what I get:

    [tex]\displaystyle\frac{{\partial^2 f}}{{\partial v \partial u}}=\frac{{\partial^2 f}}{{\partial x^2}}\frac{{\partial x}}{{\partial v}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial^2 f}}{{\partial y \partial x}} \frac{{\partial y}}{{\partial v}}\frac{{\partial x}}{{\partial u}}+\frac{{\partial f}}{{\partial x}}\frac{{\partial^2 x}}{{\partial v \partial u}}+\frac{{\partial^2 f}}{{\partial x \partial y}}\frac{{\partial x}}{{\partial v}}\frac{{\partial y}}{{\partial v}}+\frac{{\partial^2 f}}{{\partial y^2}}(\frac{{\partial y}}{{\partial v}})^2+\frac{{\partial f}}{{\partial y}}\frac{{\partial^2 y}}{{\partial v^2}}[/tex]

    Anyone knows if this is right?
    Last edited: Aug 17, 2011
  2. jcsd
  3. Aug 17, 2011 #2


    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    In the last three terms of the last line, you appear to have changed ∂y/∂u to ∂y/∂v .
  4. Aug 18, 2011 #3
    Thank you SammyS, I knew something was wrong :D
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook