Semi-infinite + finite potential well QM

  • Thread starter Thread starter Kyuubi
  • Start date Start date
  • Tags Tags
    Quantum mechanics
AI Thread Summary
The discussion focuses on the wave function behavior in a semi-infinite potential well, emphasizing that the wave function must be zero at the infinite barrier at x=0 to maintain continuity. It suggests that the solution can be derived from the odd solution of a centered finite well, but highlights the need to recalculate the energies of bound states due to the hybrid nature of the problem. The importance of matching boundary conditions at x=0 and x=a is stressed, along with the necessity of normalization. The conversation concludes that while the odd solution serves as a sketch, a formal solution involving constants and boundary conditions is essential for accurate results. This approach will clarify the distinction between bound and scattering states in the energy spectrum.
Kyuubi
Messages
18
Reaction score
8
Homework Statement
A particle of mass m is subject to the potential given below (relevant equations) with V0 > 0.
Relevant Equations
\begin{align*}
V(x) = \left\{ {\begin{array}{*{20}{l}}\infty& x < 0\\-V_0&0<x<a\\0&x>a\end{array}} \right.,\\
\end{align*}
I want to verify some inspection I'm making at this problem. Because of the infinite barrier at ##x=0##, we expect the wave function to take the value 0 there to preserve continuity. As such, we can make the conclusion that the wave function will just be a sine term in the [0,a] region.

But looking at the discussion of the finite well in Griffiths' QM, we are basically just taking the odd solution of the finite well, and instead of analyzing the ##x>0## half and saying that the ##x<0## region is replicated with ##-\psi(-x)##, we are just saying that the left half is 0. This is also taking into consideration the fact that the even part of the solution is also not included.

So the solution to this problem should simply just be the odd solution of the centered finite well.
Is this a correct assessment?

Note: I am only interested in the bound states here as of now.
 
Physics news on Phys.org
Kyuubi said:
So the solution to this problem should simply just be the odd solution of the centered finite well.
Is this a correct assessment?
I am concerned about the meaning of "just be the odd solution". As far as sketching the wavefunction, yes. But you would have to recalculate the energies of the bound states. This situation is a hybrid of the infinite potential well and a square well with bound states. I would solve the problem formally by writing the solutions in terms of constants to be determined by matching boundary conditions etc. instead of "just writing the odd solution." Don't forget to normalize in the end.
 
I'd just solve the boundary problem. You have ##\psi(x)=0## for ##x<0##, which means that you need the boundary condition ##\psi(0)=0##. Further at ##x=a## both ##\psi## and ##\psi'## should be continuous. Then for the possible energy eigenvalues you can solve for ##-V_0 \leq E \leq 0## and for ##E>0##, separately. It should be clear then, which of these values refer to bound states ("discrete" energy eigenspectrum) and scattering states ("continuous" energy spectrum).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top