Separable differential equations

hitemup
Messages
81
Reaction score
2

Homework Statement



U0UlXN7.png
[/B]

Homework Equations


The Attempt at a Solution



I've highlighted two equations on the screenshot. How did it proceed from the first to the second? I'm actually confused with the absolute values. What is the idea behind getting rid of the first absolute value(1-5v^2) while keeping the second one(x)?
 
Physics news on Phys.org
So for starters, the manipulation is something like:
##-\frac 15 \ln | 1 - 5v^2 | = \ln |x| + c ##
##\begin{align*}
\ln | 1 - 5v^2 | &= -5(\ln |x| +c)\\
&= -5( \ln |x| - \ln e^{c} )\\
&=-5 ( \ln \frac{|x|}{e^{c} })\\
&= \ln \left(\frac{|x|}{e^{c} }\right)^{-5} \\
&= \ln \left(\frac{e^{5c} }{|x|^5}\right) \end{align*}##
Then, removing the absolute value from the left gives: ##1-5v^2 = \pm \left(\frac{e^{5c} }{|x|^5} \right) ##
So ##C = \pm e^{5c} ##
There only reason not to take out the absolute value from x that I can see is so that C is not dependent on x.
 
You get rid of the ln by exponentiating both sides.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K