Series Expansion: Show Sin^Cos x = x + O(x^3)

Click For Summary
SUMMARY

The forum discussion focuses on the series expansion of the expression \((\sin x)^{\cos x}\) for small positive \(x\). It establishes that the expansion can be expressed as \(x - \left(3 \log x + 1\right) \frac{x^{3}}{3!} + \left(15 \log^{2} x + 15 \log x + 11\right) \frac{x^{5}}{5!} + \mathcal{O}(x^{7})\). This result is significant for understanding the behavior of trigonometric functions raised to variable powers in asymptotic analysis. The discussion provides a clear derivation of the coefficients involved in the series expansion.

PREREQUISITES
  • Understanding of Taylor series expansions
  • Familiarity with logarithmic functions and their properties
  • Knowledge of asymptotic notation, specifically \(\mathcal{O}\) notation
  • Basic calculus, particularly limits and derivatives
NEXT STEPS
  • Study Taylor series for trigonometric functions, focusing on \(\sin x\) and \(\cos x\)
  • Explore the properties of logarithmic functions in calculus
  • Research asymptotic analysis techniques in mathematical analysis
  • Learn about the applications of series expansions in physics and engineering
USEFUL FOR

Mathematicians, physics students, and anyone involved in advanced calculus or asymptotic analysis will benefit from this discussion, particularly those interested in series expansions of trigonometric functions.

polygamma
Messages
227
Reaction score
0
Show that for small positive $x$, $$\left( \sin x \right)^{\cos x} = x -\left( 3 \log x + 1\right) \frac{x^{3}}{3!} + \Big( 15 \log^{2} x + 15 \log x + 11 \Big) \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$
 
Last edited:
Physics news on Phys.org
$$ \large (\sin x)^{\cos x} = e^{\cos (x) \log (\sin x) } $$

$$ \large = e^{\cos (x) [\log (x- \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [\log x + \log (1-\frac{x^{2}}{3!} + \frac{x^{4}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [ \log x -(\frac{x^{2}}{3!} - \frac{x^{4}}{5!} + \frac{x^{4}}{2(3!)^{2}} + \ldots)]}$$

$$ \large = e^{\cos (x) (\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots)} $$

$$ \large =e^{(1- \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \ldots )(\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots )}$$

$$ \large = e^{\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)} + \frac{x^{4}}{4!} \log x + \ldots}$$

$$ = \large x e^{-\frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x} e^{\frac{7x^{4}}{90}+ \frac{x^{4}}{4!} \log x} \times \cdots$$

$$ =x \left( 1 - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{1}{2!} \left(\frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right)^{2} + \ldots \right) \left( 1 + \frac{7 x^{4}}{90} + \frac{x^{4}}{4!} \log x + \ldots \right) \times \cdots$$

$$ = x \left(1 + \frac{7x^{4}}{90} + \frac{x^{4}}{4!} \log x - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)^{2}} + \frac{2 x^{4}}{(2!)^{2}(3!)} \log x+ \frac{x^{4}}{2!(2!)^{2}} \log^{2} x + \ldots \right) $$

$$ = x - x \left( \frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right) + x \left(\frac{11 x^{4}}{120} + \frac{x^{4}}{8} \log x + \frac{x^{4}}{8}\log^{2} x \right) + \ldots $$

$$ = x - \left( 3 \log x +1 \right) \frac{x^{3}}{3!} + \left(15 \log^{2} x + 15 \log x + 11 \right) \frac{x^{5}}{5!} + \ldots $$
 
Last edited:

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K