MHB Series Expansion: Show Sin^Cos x = x + O(x^3)

polygamma
Messages
227
Reaction score
0
Show that for small positive $x$, $$\left( \sin x \right)^{\cos x} = x -\left( 3 \log x + 1\right) \frac{x^{3}}{3!} + \Big( 15 \log^{2} x + 15 \log x + 11 \Big) \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$
 
Last edited:
Mathematics news on Phys.org
$$ \large (\sin x)^{\cos x} = e^{\cos (x) \log (\sin x) } $$

$$ \large = e^{\cos (x) [\log (x- \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [\log x + \log (1-\frac{x^{2}}{3!} + \frac{x^{4}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [ \log x -(\frac{x^{2}}{3!} - \frac{x^{4}}{5!} + \frac{x^{4}}{2(3!)^{2}} + \ldots)]}$$

$$ \large = e^{\cos (x) (\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots)} $$

$$ \large =e^{(1- \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \ldots )(\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots )}$$

$$ \large = e^{\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)} + \frac{x^{4}}{4!} \log x + \ldots}$$

$$ = \large x e^{-\frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x} e^{\frac{7x^{4}}{90}+ \frac{x^{4}}{4!} \log x} \times \cdots$$

$$ =x \left( 1 - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{1}{2!} \left(\frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right)^{2} + \ldots \right) \left( 1 + \frac{7 x^{4}}{90} + \frac{x^{4}}{4!} \log x + \ldots \right) \times \cdots$$

$$ = x \left(1 + \frac{7x^{4}}{90} + \frac{x^{4}}{4!} \log x - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)^{2}} + \frac{2 x^{4}}{(2!)^{2}(3!)} \log x+ \frac{x^{4}}{2!(2!)^{2}} \log^{2} x + \ldots \right) $$

$$ = x - x \left( \frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right) + x \left(\frac{11 x^{4}}{120} + \frac{x^{4}}{8} \log x + \frac{x^{4}}{8}\log^{2} x \right) + \ldots $$

$$ = x - \left( 3 \log x +1 \right) \frac{x^{3}}{3!} + \left(15 \log^{2} x + 15 \log x + 11 \right) \frac{x^{5}}{5!} + \ldots $$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top