MHB Series Expansion: Show Sin^Cos x = x + O(x^3)

Click For Summary
The discussion focuses on proving the series expansion of the expression (sin x)^(cos x) for small positive x. It establishes that this expression can be approximated as x minus a combination of logarithmic terms multiplied by x raised to the third and fifth powers, along with higher-order terms represented as O(x^7). The key steps involve using Taylor series expansions for sin x and cos x to derive the coefficients for the series. The final result highlights the significance of logarithmic factors in the approximation. This analysis provides insight into the behavior of the function near zero.
polygamma
Messages
227
Reaction score
0
Show that for small positive $x$, $$\left( \sin x \right)^{\cos x} = x -\left( 3 \log x + 1\right) \frac{x^{3}}{3!} + \Big( 15 \log^{2} x + 15 \log x + 11 \Big) \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$
 
Last edited:
Mathematics news on Phys.org
$$ \large (\sin x)^{\cos x} = e^{\cos (x) \log (\sin x) } $$

$$ \large = e^{\cos (x) [\log (x- \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [\log x + \log (1-\frac{x^{2}}{3!} + \frac{x^{4}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [ \log x -(\frac{x^{2}}{3!} - \frac{x^{4}}{5!} + \frac{x^{4}}{2(3!)^{2}} + \ldots)]}$$

$$ \large = e^{\cos (x) (\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots)} $$

$$ \large =e^{(1- \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \ldots )(\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots )}$$

$$ \large = e^{\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)} + \frac{x^{4}}{4!} \log x + \ldots}$$

$$ = \large x e^{-\frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x} e^{\frac{7x^{4}}{90}+ \frac{x^{4}}{4!} \log x} \times \cdots$$

$$ =x \left( 1 - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{1}{2!} \left(\frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right)^{2} + \ldots \right) \left( 1 + \frac{7 x^{4}}{90} + \frac{x^{4}}{4!} \log x + \ldots \right) \times \cdots$$

$$ = x \left(1 + \frac{7x^{4}}{90} + \frac{x^{4}}{4!} \log x - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)^{2}} + \frac{2 x^{4}}{(2!)^{2}(3!)} \log x+ \frac{x^{4}}{2!(2!)^{2}} \log^{2} x + \ldots \right) $$

$$ = x - x \left( \frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right) + x \left(\frac{11 x^{4}}{120} + \frac{x^{4}}{8} \log x + \frac{x^{4}}{8}\log^{2} x \right) + \ldots $$

$$ = x - \left( 3 \log x +1 \right) \frac{x^{3}}{3!} + \left(15 \log^{2} x + 15 \log x + 11 \right) \frac{x^{5}}{5!} + \ldots $$
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K