MHB Series Expansion: Show Sin^Cos x = x + O(x^3)

Click For Summary
The discussion focuses on proving the series expansion of the expression (sin x)^(cos x) for small positive x. It establishes that this expression can be approximated as x minus a combination of logarithmic terms multiplied by x raised to the third and fifth powers, along with higher-order terms represented as O(x^7). The key steps involve using Taylor series expansions for sin x and cos x to derive the coefficients for the series. The final result highlights the significance of logarithmic factors in the approximation. This analysis provides insight into the behavior of the function near zero.
polygamma
Messages
227
Reaction score
0
Show that for small positive $x$, $$\left( \sin x \right)^{\cos x} = x -\left( 3 \log x + 1\right) \frac{x^{3}}{3!} + \Big( 15 \log^{2} x + 15 \log x + 11 \Big) \frac{x^{5}}{5!} + \mathcal{O}(x^{7})$$
 
Last edited:
Mathematics news on Phys.org
$$ \large (\sin x)^{\cos x} = e^{\cos (x) \log (\sin x) } $$

$$ \large = e^{\cos (x) [\log (x- \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [\log x + \log (1-\frac{x^{2}}{3!} + \frac{x^{4}}{5!} + \ldots)]}$$

$$ \large = e^{\cos (x) [ \log x -(\frac{x^{2}}{3!} - \frac{x^{4}}{5!} + \frac{x^{4}}{2(3!)^{2}} + \ldots)]}$$

$$ \large = e^{\cos (x) (\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots)} $$

$$ \large =e^{(1- \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \ldots )(\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} + \ldots )}$$

$$ \large = e^{\log x - \frac{x^{2}}{3!} - \frac{x^{4}}{180} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)} + \frac{x^{4}}{4!} \log x + \ldots}$$

$$ = \large x e^{-\frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x} e^{\frac{7x^{4}}{90}+ \frac{x^{4}}{4!} \log x} \times \cdots$$

$$ =x \left( 1 - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{1}{2!} \left(\frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right)^{2} + \ldots \right) \left( 1 + \frac{7 x^{4}}{90} + \frac{x^{4}}{4!} \log x + \ldots \right) \times \cdots$$

$$ = x \left(1 + \frac{7x^{4}}{90} + \frac{x^{4}}{4!} \log x - \frac{x^{2}}{3!} - \frac{x^{2}}{2!} \log x + \frac{x^{4}}{2!(3!)^{2}} + \frac{2 x^{4}}{(2!)^{2}(3!)} \log x+ \frac{x^{4}}{2!(2!)^{2}} \log^{2} x + \ldots \right) $$

$$ = x - x \left( \frac{x^{2}}{3!} + \frac{x^{2}}{2!} \log x \right) + x \left(\frac{11 x^{4}}{120} + \frac{x^{4}}{8} \log x + \frac{x^{4}}{8}\log^{2} x \right) + \ldots $$

$$ = x - \left( 3 \log x +1 \right) \frac{x^{3}}{3!} + \left(15 \log^{2} x + 15 \log x + 11 \right) \frac{x^{5}}{5!} + \ldots $$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K