MHB Set of vectors form a vector space

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 8769this is what is given
so by addition
$$\begin{bmatrix}x_1\\y_1\\5z_1\end{bmatrix}
\oplus
\begin{bmatrix} x_2\\y_2\\5z_2
\end{bmatrix}
=
\begin{bmatrix}
x_1+x_2\\y_1+y_2\\5z_1+5z_2
\end{bmatrix}
=
\begin{bmatrix}
X\\Y\\10Z
\end{bmatrix}$$

uhmmmm really?
 

Attachments

  • hw10.2.PNG
    hw10.2.PNG
    4.1 KB · Views: 161
Physics news on Phys.org
karush said:
this is what is given
so by addition
$$\begin{bmatrix}x_1\\y_1\\5z_1\end{bmatrix}
\oplus
\begin{bmatrix} x_2\\y_2\\5z_2
\end{bmatrix}
=
\begin{bmatrix}
x_1+x_2\\y_1+y_2\\5z_1+5z_2
\end{bmatrix}
=
\begin{bmatrix}
X\\Y\\10Z
\end{bmatrix}$$

uhmmmm really?
This time there are no z's. Or z = 5 in all cases, if you prefer to look at it that way.
[math]\left [ \begin{matrix} x_1 \\ y_1 \\ 5 \end{matrix} \right ] \oplus \left [ \begin{matrix} x_2 \\ y_2 \\ 5 \end{matrix} \right ] = \left [ \begin{matrix} x_1 + x_2 \\ y_1 + y_2 \\ 5 + 5 \end{matrix} \right ] \notin \left [ \begin{matrix} X \\ Y \\ 5 \end{matrix} \right ] [/math]

so addition is not closed this time.

-Dan
 
https://dl.orangedox.com/GXEVNm73NxaGC9F7Cy

SSCwt.png
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top