MHB Shane Trulson's Calc Homework: Arc Length of Parametric Curve

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Curve Parametric
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus Homework?

Calculate the length of the curve x(t) = cost+tsint, y(t) = sint-tcost, 0<_t<_pi/2

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Re: Shane Trulson's question at Yahoo! Answers regardinf arc-length of parametric curve

Hello Shane Trulson,

We are give the following theorem:

If $$x=f(t)$$ and $$y=g(t)$$, $a\le t\le b$, define a smooth curve $C$ that does not intersect itself for $a<b<t$ then the length $s$ of $C$ is given by:

$$s=\int_a^b\sqrt{\left(\frac{dx}{dt} \right)^2+\left(\frac{dx}{dt} \right)^2}\,dt$$

Now, for this problem we are given:

$$x(t)=\cos(t)+t\sin(t)$$

$$y(t)=\sin(t)-t\cos(t)$$

And so we find:

$$\frac{dx}{dt}=-\sin(t)+t\cos(t)+\sin(t)=t\cos(t)$$

$$\frac{dy}{dt}=\cos(t)-\left(-t\sin(t)+\cos(t) \right)=t\sin(t)$$

To answer the issue of whether $C$ crosses itself or not, consider:

$$\frac{dy}{dx}=\frac{dy}{dt}\cdot\frac{dt}{dx}= \frac{t\sin(t)}{t\cos(t)}=\tan(t)$$

Now, we know that on $$0<t<\frac{\pi}{2}$$ we have:

$$0<\frac{dy}{dx}$$

And so $C$ must be strictly increasing and thus cannot cross itself. So, we may now proceed to find the arc-length:

$$s=\int_0^{\frac{\pi}{2}} \sqrt{ \left(t \cos(t) \right)^2+ \left(t \sin(t) \right)^2}\,dt= \int_0^{ \frac{\pi}{2}} \sqrt{t^2 \left( \cos^2(t)+ \sin^2(t) \right)}\,dt$$

Observing that $t$ is non-negative on the given interval and applying a Pythagorean identity, we may state:

$$s=\int_0^{\frac{\pi}{2}} t\,dt=\left[\frac{1}{2}t^2 \right]_0^{\frac{\pi}{2}}=\frac{1}{2}\left(\frac{\pi}{2} \right)^2-\frac{1}{2}\left(0 \right)^2$$

Hence, we find:

$$\bbox[5px,border:2px solid red]{s=\frac{\pi^2}{8}}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top