modeman said:
What is the physics of sharp turning; sharp curves and changing direction about those curves?
Curvature:
\kappa = \left| {\frac{{d\vec T}}{{ds}}} \right| = \frac{{\left| {\vec T\,'\left( t \right)} \right|}}{{\left| {\vec r\,'\left( t \right)} \right|}} = \frac{{\left| {\vec r\,'\left( t \right) \times \vec r\, {''}\left( t \right)} \right|}}{{\left| {\vec r\,'\left( t \right)} \right|^3 }}
Sharper curves have larger values of \kappa.
Curvature has its physical applications; for example, let \vec r ( t ) represent the position of an object at time t. You know that
\left\{ \begin{gathered}<br />
\vec T = \frac{{\vec r\,'}}<br />
{{\left| {\vec r\,'} \right|}} = \frac{{\vec v}}<br />
{{\left| {\vec v} \right|}} \Rightarrow \vec v = \left| {\vec v} \right|\vec T \hfill \\<br />
\kappa = \frac{{\left| {\vec T\,'} \right|}}<br />
{{\left| {\vec r\,'} \right|}} = \frac{{\left| {\vec T\,'} \right|}}<br />
{{\left| {\vec v} \right|}} \Rightarrow \left| {\vec T\,'} \right| = \kappa \left| {\vec v} \right| \hfill \\<br />
\vec N = \frac{{T\,'}}<br />
{{\left| {T\,'} \right|}} \Rightarrow T\,' = \vec N\left| {T\,'} \right| = \kappa \left| {\vec v} \right|\vec N \hfill \\ <br />
\end{gathered} \right\}
And so, making the necessary substitution,
\begin{gathered}<br />
\vec a = \vec v \, ' = \left| {\vec v} \right| ' \vec T + \left| {\vec v} \right|\vec T' \Rightarrow \hfill \\<br />
\vec a = \left| {\vec v} \right| '\vec T + \kappa \left| {\vec v} \right|^2 \vec N \hfill \\ \end{gathered}
Hope this helps
