Should angular velocities always be referred to frames?

  • Thread starter Thread starter etotheipi
  • Start date Start date
  • Tags Tags
    Angular Frames
Click For Summary
Angular velocities should be referred to specific frames to avoid confusion, particularly when discussing the motion of particles or rigid bodies. The angular velocity of a frame with respect to another is defined in a way that allows for the addition of angular velocities between frames. It is more meaningful to describe the angular velocity of the frame in which a particle is at rest, rather than attributing angular velocity directly to the particle itself. This approach simplifies the analysis of rigid-body dynamics, especially when distinguishing between inertial and non-inertial frames. The discussion highlights the importance of clarity in terminology when dealing with angular velocities in different reference frames.
etotheipi
This is a semantic question, without any implications really, but I wondered if someone could check if I understand this correctly? The angular velocity ##\vec{\Omega}## of a frame ##\mathcal{F}## with respect to another frame ##\mathcal{F}'## is defined such that, for any vector ##\vec{a}##,$$\left(\frac{d\vec{a}}{dt} \right)_{\mathcal{F}'} = \left(\frac{d\vec{a}}{dt} \right)_{\mathcal{F}} + \vec{\Omega} \times \vec{a}$$The property of addition of angular velocities between frames follows quite naturally,$$\left(\frac{d\vec{a}}{dt} \right)_{\mathcal{F}''} = \left [\left(\frac{d\vec{a}}{dt} \right)_{\mathcal{F}} + \vec{\Omega}_1 \times \vec{a} \right] + \vec{\Omega}_2 \times \vec{a} = \left(\frac{d\vec{a}}{dt} \right)_{\mathcal{F}} + (\vec{\Omega}_1 + \vec{\Omega}_2) \times \vec{a}$$Sometimes, we might say a particle or a rigid body has an angular velocity of ##\vec{\omega}## with respect to some coordinate system. Whilst this seems passable if there are only two frames involved, it doesn't seem like a good terminology otherwise. For instance, whilst it makes perfect sense to say that the angular velocity of frame ##\mathcal{F}## w.r.t. ##\mathcal{F}''## is ## (\vec{\Omega}_1 + \vec{\Omega}_2)##, it doesn't seem to make sense to say a particle has an angular velocity of ## (\vec{\Omega}_1 + \vec{\Omega}_2)## w.r.t. ##\mathcal{F}##. Instead, to get anything meaningful for the particle, you need to explicitly perform the change of coordinates ##\vec{r}'' = \vec{R} + \vec{r}## and differentiate (making use of the second equation), e.g. casting it in terms of ##\vec{v}'' = \vec{V} + (\vec{\Omega}_1 + \vec{\Omega}_2) \times \vec{r}##.

I wondered if you guys would agree that it's better to talk about the angular velocity of the frame in which the particle is at rest (or the body fixed frame of a rigid body), rather than the angular velocity of the particle itself? Thanks 😁
 
  • Like
Likes Lnewqban
Physics news on Phys.org
I think it simplifies things a lot to treat the rigid-body dynamics as usual, i.e., in an inertial "space-fixed frame" and introducing the "body-fixed frame" which is non-inertial (in the general case the body-fixed origin can be accelerated and the body, i.e., the body-fixed Cartesian basis of the body-fixed frame is rotating against the space-fixed inertial frame).

It can of course be interesting to consider the equation of motion of a rigid body/gyroscope as observed in a non-inertial (particularly a rotating) frame.
 
  • Like
Likes etotheipi
vanhees71 said:
I think it simplifies things a lot to treat the rigid-body dynamics as usual, i.e., in an inertial "space-fixed frame" and introducing the "body-fixed frame" which is non-inertial (in the general case the body-fixed origin can be accelerated and the body, i.e., the body-fixed Cartesian basis of the body-fixed frame is rotating against the space-fixed inertial frame).

Yes that is also my preferred way of analysing the motion. For rigid bodies it is very simple conceptually, since the body fixed frame is easily realized and it is completely unambiguous to talk about the angular velocity of a rigid body.

I don't think I have tried much extended body dynamics in a rotating frame, though, so maybe I will try and find some problems. Thanks!
 
Last edited by a moderator:
An interesting application of a spinning top in a rotating frame is the theory of the gyrocompass. Interestingly Einstein was involved as an expert in patent issues about the subject during WW1.

https://en.wikipedia.org/wiki/Gyrocompass
 
  • Informative
Likes berkeman and etotheipi
That's very cool! I would like to try and do the derivation but I fear I will make an algebraic mistake somewhere :nb). In any case it looks like a nice exercise for the Lagrangian dynamics 😁
 
  • Like
Likes vanhees71
For simple comparison, I think the same thought process can be followed as a block slides down a hill, - for block down hill, simple starting PE of mgh to final max KE 0.5mv^2 - comparing PE1 to max KE2 would result in finding the work friction did through the process. efficiency is just 100*KE2/PE1. If a mousetrap car travels along a flat surface, a starting PE of 0.5 k th^2 can be measured and maximum velocity of the car can also be measured. If energy efficiency is defined by...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
42
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
4K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
Replies
5
Views
2K