Show Picard iteration diverges

Click For Summary
SUMMARY

The discussion focuses on the divergence of the Picard iteration sequence defined by the recurrence relation involving integrals. The sequence is expressed as $$x_k(t)=t+\frac{t^{2^{k+1}-1}}{(2^2-1)^{2^{k-1}}(2^3-1)^{2^{k-2}}\cdots(2^{k+1}-1)}$$. It is established that for values of ##|t|>1##, the second term diverges, leading to the conclusion that the sequence diverges for ##|t|\geq\sqrt[4]{48}##. The analysis includes the role of the error term ##e_k(t)## and its growth conditions necessary for divergence.

PREREQUISITES
  • Understanding of Picard iteration methods
  • Familiarity with integral calculus
  • Knowledge of convergence and divergence in sequences
  • Ability to manipulate inequalities and perform mathematical induction
NEXT STEPS
  • Study the properties of Picard iterations in differential equations
  • Learn about convergence criteria for iterative sequences
  • Explore advanced integral calculus techniques
  • Investigate error analysis in numerical methods
USEFUL FOR

Mathematicians, students studying numerical methods, and researchers working on differential equations will benefit from this discussion.

psie
Messages
315
Reaction score
40
Homework Statement
Find the solution of the problem ##x'=1+(x-t)^2, x(0)=0##. Then show that there is a number ##a>0## such that the successive approximations diverge when ##|t|>a##.
Relevant Equations
The relevant tools are knowing the method of successive approximations, also known as Picard iteration. This is explained on Wikipedia, in the link below.
For an example of a Picard iteration, see here. In this case, we have

\begin{align}
&x_0(t)=x(0)=0,\nonumber\\
&x_1(t)=x_0(t)+\int_0^t \big(1+(x_0(s)-s)\big)^2ds=t+\frac{t^3}{3},\nonumber \\
&x_2(t)=x_0(t)+\int_0^t \big(1+(x_1(s)-s)\big)^2ds=t+\frac{t^7}{3^27},\nonumber\\
&\cdots \nonumber
\end{align}

You can verify by induction that we have, $$x_k(t)=t+\frac{t^{2^{k+1}-1}}{(2^2-1)^{2^{k-1}}(2^3-1)^{2^{k-2}}\cdots(2^{k+1}-1)}.\tag1$$

By inspection, I think the second term goes to ##0## for ##|t|\leq 1##. And ##x(t)=t## is indeed a solution to the IVP above. However, what about divergence? Does the numerator grow faster than the denominator for ##|t|>1##?

A TA has noted the following. If we denote the second term in ##(1)## by ##e_k(t)##, then $$e_k(t)=\frac{(e_{k-1}(t))^2 t}{(2^{k+1}-1)}\geq \frac{(e_{k-1}(t))^2 t}{2^{k+1}}.$$ The TA has suggested that if ##e_k(t)## is to diverge, then it needs to increase by, say, a factor of ##2##. So $$\frac{(e_{k-1}(t))^2 t}{2^{k+1}}\geq 2\cdot e_{k-1}(t).$$ However, why would the sequence diverge if it were to increase by a factor of ##2##? Moreover I'm unsure how to actually find an ##a## such that ##x_k(t)## diverges for ##|t|>a##. Any help is greatly appreciated.
 
Physics news on Phys.org
2 is arbitrary. Any number larger than 1 will do, because then the second term grows at least exponentially fast.
If you can find a such that t>a gives youthis exponential growth, then you're done.
 
  • Like
Likes   Reactions: psie
Ok, so the sequence will diverge if ##e_{k+1}(t)\geq 2e_k(t)##, because then $$e_{k+1}(t)\geq 2^ke_1(t).\tag2$$ I guess the ##t##'s that satisfy this inequality are the ones that satisfy $$\frac{(e_{k-1}(t))^2 t}{2^{k+1}}\geq 2\cdot e_{k-1}(t).\tag3$$ Since ##e_{k-1}(t)## is nonzero for ##t\neq 0##, we can divide by ##e_{k-1}(t)## in ##(3)## when ##t\neq 0## (##e_k(t)## converges at ##t=0## anyway). We can then pick any ##k##, so ##k=2## and we get from ##(3)## that, $$\frac{e_{1}(t) t}{2^{3}}=\frac{t^4}{3\cdot 8}\geq 2,$$ which is equivalent to ##|t|\geq\sqrt[4]{48}##.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
2K