- #1
- 17
- 0
Homework Statement
Given the matrix
$$ \Omega = \begin{pmatrix}
0 & -\psi & 0 & 0 \\
-\psi & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
show that ## e^{\Omega}## is a Lorentz transformation along the x-axis with ## \beta = tanh(\psi)##
Homework Equations
During the lesson we derived from the standard Lorentz transformation matrix the following matrix, where ##\psi## is the rapidity:
$$ \Lambda = \begin{pmatrix}
cosh(\psi) & -sinh(\psi) & 0 & 0 \\
-sinh(\psi) & cosh(\psi) & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} $$
Other equations:
##cosh(\psi)=\gamma##
##sinh(\psi)=\gamma \beta##
The Attempt at a Solution
[/B]
From ## \beta = tanh(\psi)##:
## \psi=arctg(\beta) = \ln\sqrt{\frac{1+\beta}{1-\beta}} ##
## e^{-\psi} = \sqrt{\frac{1-\beta}{1+\beta}}##
I think i have to show that the two matrices (##\Lambda## and ##e^{-\Omega}##) are the same, but i can't understand why there are zeros on the diagonal. For the two first zeros on the diagonal ##cosh(\psi)=0##, so ##\psi = \frac \pi 2##.
I think there's an error somewhere, because with the previous formulas it turns out that ##\beta = 1## and ##v=c##.
To be honest, i can't find the right way to solve the problem, maybe it's just algebra? Can you please give me a hint? Thank you!