1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Show that f is continious at 0 (easy but confused)

  1. Jun 24, 2013 #1
    1. The problem statement, all variables and given/known data

    let f be a function t: lf(x)l≤lxl
    show that f is continious at 0


    3. The attempt at a solution
    it's easy to see that f(0)=0
    now [itex]\forall[/itex]E>0 [itex]\exists[/itex]α>0 [itex]\forall[/itex]x[itex]\in[/itex]D: lxl<α => lf(x)-f(0)l<E now in the solution manual they just put it like this : since lxl<α implies lf(x)-(f(0)=0)l<E then f i s continious at a , what i'm not getting is that they didn't give alpha a value they just want from x<alpha to the result ? i've been studying limits since 2012 so this is a weird issue to me , please help
     
    Last edited by a moderator: Jun 24, 2013
  2. jcsd
  3. Jun 24, 2013 #2

    mfb

    User Avatar
    2016 Award

    Staff: Mentor

    Just take α=E.
     
  4. Jun 25, 2013 #3
    thanks i forgot a bit about the first definition that's why i had trouble ,i've got it now
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Show that f is continious at 0 (easy but confused)
  1. Showing f(0)=f(1) (Replies: 12)

Loading...