Show that radial worldlines with u = const are outgoing null rays

  • Thread starter Thread starter so_gr_lo
  • Start date Start date
  • Tags Tags
    Radial
Click For Summary
Radial worldlines with constant u represent outgoing null rays in the context of Schwarzschild coordinates. By rearranging the differential for dt and substituting it into the line element, the outgoing Eddington-Finkelstein form is derived. This form shows that constant u and radial motion yield a line element where ds^2 equals zero, confirming the null nature of the geodesics. In Regge-Wheeler coordinates, radial null geodesics satisfy the condition dt/dr* = ±1, with the outgoing solution corresponding to u being constant. Thus, the discussion establishes that these worldlines indeed represent outgoing null rays.
so_gr_lo
Messages
69
Reaction score
10
Homework Statement
The transformation from Schwarzschild coordinates (t,r,θ,φ) to outgoing Eddington– Finkelstein coordinates (u, r′, θ′, φ′) is given by
u = t−r∗
r′ = r
θ′ = θ
φ′ = φ,
where r∗ satisfies dr∗/dr = (1−2M/r)−1. Use the rule for the coordinate transformation
of metric components to obtain the line element in the (u, r′, θ′, φ′) coordinates.

(b) Show that radial worldlines with u = const are outgoing null rays.

I have managed part a but am not sure how to show how the line element I have is null.

I have used the fact that u = t−r∗ suggests du=0 and ## d{\Omega}^2## = 0 to simplify the line element in (a) and give the result below. Does anyone know how I can show that the result is null?
Relevant Equations
u = t−r∗
r∗ satisfies dr∗/dr = (1−2M/r)−1
$$ ds^2 = -(1-\frac{2M}{r'})(\frac{\frac{r'}{2M} -1+2M}{\frac{r'}{2M}-1})(dr')^2+(1-\frac{2M}{r'})^-1 (dr')^2 $$
 
Physics news on Phys.org
With ##u = t-r_{\star}## you have $$du = dt - \frac{dr}{(1-\tfrac{2M}{r})}$$You rearrange this for ##dt## and stick that into the line element in Schwarzshild coordinates. You end up with the outgoing Eddington Finkelstein line element,$$ds^2 = -(1-\tfrac{2M}{r}) du^2 - 2du dr + r^2 d\Omega^2$$Manifestly, constant ##u## (##du = 0##) and radial motion (##d\theta = d\phi = 0##) corresponds to ##ds^2 = 0##.

Why outgoing? In terms of the Regge-Wheeler coordinate, the line element is ##ds^2 = -(1-\tfrac{2M}{r})[-dt^2 + dr_{\star}^2] + r^2 d\Omega^2##. That means radial null geodesics correspond to ##dt/dr_{\star} = \pm 1##, or equivalently ##t \mp r_{\star} = \mathrm{const}## along radial null geodesics. The minus-sign option is outgoing, i.e. ##u := t-r_{\star} = \mathrm{const}## along the outgoing radial null geodesics.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
1
Views
1K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
14
Views
2K