Show that the limit (1+z/n)^n=e^z holds

Click For Summary

Homework Help Overview

The discussion revolves around proving the limit \(\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^n=e^z\). Participants explore connections between this limit and earlier tasks involving series and binomial coefficients.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Problem interpretation

Approaches and Questions Raised

  • Participants attempt to rewrite expressions using the binomial theorem and factorials. There are questions about the influence of limits on sums and the interpretation of fixed versus variable parameters in the context of limits.

Discussion Status

Some participants have provided guidance on rewriting terms and clarifying the role of fixed parameters in limits. There is ongoing exploration of how to connect the results from previous tasks to the current limit problem, with no explicit consensus reached yet.

Contextual Notes

Participants note that \(N\) is fixed while \(n\) approaches infinity, which raises questions about the limits of finite sums versus infinite series.

Lambda96
Messages
233
Reaction score
77
Homework Statement
Show that the following applies with tasks b and c ##\lim_{n\to\infty} \Bigl( 1 + \frac{z}{n} \Bigr)^n = e^z##
Relevant Equations
Tasks b and c
Hi,

I have problems proving task d

Bildschirmfoto 2023-12-16 um 13.47.11.png

I then started with task c and rewrote it as follows ##\lim_{n\to\infty}\sum\limits_{k=0}^{N}\Bigl( \frac{z^k}{k!} - \binom{n}{k} \frac{z^k}{n^k} \Bigr)=0 \quad \rightarrow \quad \lim_{n\to\infty}\sum\limits_{k=0}^{N} \frac{z^k}{k!} = \lim_{n\to\infty}\sum\limits_{k=0}^{N} \binom{n}{k} \frac{z^k}{n^k}##

I can use the right-hand side of the equation, i.e. ##\lim_{n\to\infty}\sum\limits_{k=0}^{N} \binom{n}{k} \frac{z^k}{n^k}## with the help of the binomial theorem rewrite as follows ##\lim_{n\to\infty}\sum\limits_{k=0}^{N} \binom{n}{k} \frac{z^k}{n^k}= \lim_{n\to\infty} \Big( 1+ \frac{z}{n} \Bigr)^n ##

Now I just have to show that the left-hand side is ##\lim_{n\to\infty}\sum\limits_{k=0}^{N} \frac{z^k}{k!}=e^z##. Unfortunately, I can't get any further here, I assume that I can use task 1b for this, but unfortunately I don't know how.
 
Physics news on Phys.org
I suggest writing out
$$
{n \choose k} = \frac{n!}{k!(n-k)!}
$$
and work from there.
 
  • Like
Likes   Reactions: Lambda96
Thank you Orodruin for your help 👍

I can rewrite ##\binom{n}{k}## as follows ##\binom{n}{k} = \frac{n!}{k! (n-k)!}= \prod\limits_{j = 1}^{k} \frac{n+1-j}{j}## Unfortunately, I can't get any further with this either

But I'm also wondering if I'm misinterpreting the term on the left, I thought that the limit has no influence on the sum, but ##\lim_{n\to\infty}\sum\limits_{k=0}^{N} \frac{z^k}{k!}## should be ##\sum\limits_{k=0}^{\infty} \frac{z^k}{k!}##, right?
 
Lambda96 said:
Thank you Orodruin for your help 👍

I can rewrite ##\binom{n}{k}## as follows ##\binom{n}{k} = \frac{n!}{k! (n-k)!}= \prod\limits_{j = 1}^{k} \frac{n+1-j}{j}## Unfortunately, I can't get any further with this either
The last step here, while correct, is a step in the wrong direction. I suggest inserting into the expression and factorizing out the k! as that is what should appear in the expansion of the exponential.
 
  • Like
Likes   Reactions: Lambda96
Consider \begin{split}<br /> \sum_{k=0}^N \left(\frac{z^k}{k!} - \frac{n!}{(n-k)!k!}\frac{z^k}{n^k}\right) &amp;= <br /> \sum_{k=0}^N \frac{z^k}{k!}\left(1 - \frac{n!}{(n-k)!n^k}\right) \\ &amp;= <br /> \sum_{k=0}^N \frac{z^k}{k!} \left(1 - \frac{n(n-1)(n-2) \dots (n-k + 1)}{n^k}\right) <br /> \end{split} Note that N is fixed, while n \to \infty.
 
  • Like
Likes   Reactions: Lambda96
Lambda96 said:
But I'm also wondering if I'm misinterpreting the term on the left, I thought that the limit has no influence on the sum, but ##\lim_{n\to\infty}\sum\limits_{k=0}^{N} \frac{z^k}{k!}## should be ##\sum\limits_{k=0}^{\infty} \frac{z^k}{k!}##, right?
No, as @pasmith said, ##N## is fixed at some finite value while ##n\to \infty##. ##N## is not ##n##.
 
  • Like
Likes   Reactions: Lambda96
Thank you Orodruin and pasmith for your help 👍👍

If I now calculate the limit ##\lim_{n\to\infty}## of ##\sum\limits_{n=0}^{N} \frac{z^k}{k!} \biggl( 1 - \frac{n(n-1)(n-2) \ldots (n-k+1)}{n^k} \biggr)##, the result is:

$$\lim_{n\to\infty} \sum\limits_{n=0}^{N} \frac{z^k}{k!} \biggl( 1 - \frac{n(n-1)(n-2) \ldots (n-k+1)}{n^k} \biggr)= \sum\limits_{n=0}^{N} \frac{z^k}{k!} \biggl( 1 - \lim_{n\to\infty} \frac{n(n-1)(n-2) \ldots (n-k+1)}{n^k} \biggr)=\sum\limits_{n=0}^{N} \frac{z^k}{k!} \biggl( 1 - 1 \biggr)=0$$

Unfortunately, I don't know now how to solve task d, i.e. ##\lim_{n\to\infty} \biggl( 1 + \frac{z}{n} \biggr)^n =e^z ## with the expression from task b and c
 

Similar threads

  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K