Showing a vector field is imcompressible

Click For Summary
The discussion revolves around understanding the separation of components in a vector field and the distinction between a vector and its magnitude. The confusion arises from the notation where the vector is represented as boldface **r** and its magnitude as r. Participants clarify that the numerator represents the vector, while the denominator represents its magnitude, which is not a constant. The importance of correctly interpreting the notation is emphasized, particularly in how it affects calculations involving the vector field. Overall, the conversation highlights the need for clarity in mathematical notation to avoid misunderstandings.
question dude
Messages
80
Reaction score
0

Homework Statement


attachment.php?attachmentid=455997&d=1440616258.jpg


Homework Equations

The Attempt at a Solution



As you can see, the solution is shown just below the question.

Essentially, I don't understand how the x, y and z component of the vector field has been separated because the numerator of the vector field's fraction is: (x^2 + y^2 + z^2)^(1/2)

It seems like they've just taken x^2 out and square rooted it to get 'x', but you can't do that, can you?
 
Physics news on Phys.org
question dude said:

Homework Statement


attachment.php?attachmentid=455997&d=1440616258.jpg


Homework Equations

The Attempt at a Solution



As you can see, the solution is shown just below the question.

Essentially, I don't understand how the x, y and z component of the vector field has been separated because the numerator of the vector field's fraction is: (x^2 + y^2 + z^2)^(1/2)

It seems like they've just taken x^2 out and square rooted it to get 'x', but you can't do that, can you?

That isn't what they have done. The numerator is bold faced ##\bf{r}## and the denominator is ##r##. The first is the vector and the second its magnitude. r = xi + yj + zk.
 
LCKurtz said:
That isn't what they have done. The numerator is bold faced ##\bf{r}## and the denominator is ##r##. The first is the vector and the second its magnitude. r = xi + yj + zk.

Do I treat the non-bold r as a constant?

If sub in bold r, I get:

G = [(x^2 + y^2 + z^2)^0.5 ] / 4*pi*r^3
 
question dude said:
Do I treat the non-bold r as a constant?

If sub in bold r, I get:

G = [(x^2 + y^2 + z^2)^0.5 ] / 4*pi*r^3

I just noticed in your graphic under (b) they have ##{\bf r} = \sqrt{x^2+y^2+z^2}## That should not have been a bold face r. The bold face r represents the vector and the plain r its magnitude, which is not constant.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K