(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let f be continuous. Show

[itex]^{1}_{0}∫[/itex] [itex]^{y}_{0}∫[/itex] [itex]^{z}_{0}∫[/itex] f(x) dx dz dy = [itex]\frac{1}{2}[/itex] [itex]^{1}_{0}∫[/itex] (1-x)[itex]^{2}[/itex] f(x) dx

Hint: Use Fubini to rewrite the left expression into an iterated integral which ends in dx.

2. Relevant equations

Fubini's Theorem:

∫∫∫[itex]_{B}[/itex] f(x,y,z) dV = [itex]^{s}_{r}∫[/itex][itex]^{d}_{c}∫[/itex] [itex]^{b}_{ra}∫[/itex] f(x,y,z) dxdydz

3. The attempt at a solution

So I've been playing around with this problem for a little bit and I'm stumped.

Fubini's theorem is the theorem that states that if f is continuous then you can treat each integral as it's own separate entity right?

So with constants, yea this would be pretty simple, but two of the ends we're measuring at are variables (namely the z and y).

Well, I tried following the hint and using Fubini's theorem and I got

[itex]^{z}_{0}∫[/itex][itex]^{1}_{0}∫[/itex][itex]^{y}_{0}∫[/itex]f(x) dz dy dx

which if you work it out, becomes

[itex]\frac{1}{2}[/itex][itex]^{z}_{0}∫[/itex]f(x)dx, which I don't know how to have equal to

[itex]\frac{1}{2}[/itex] [itex]^{1}_{0}∫[/itex] (1-x)[itex]^{2}[/itex] f(x) dx

Now, I think/know this is wrong. It's probably because I didn't use Fubini's theorem right or adjust the limits correctly (although involving problems with constant number values, that's what I did).

1. The problem statement, all variables and given/known data

2. Relevant equations

3. The attempt at a solution

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Showing an iterated integral is equal to an integral

**Physics Forums | Science Articles, Homework Help, Discussion**