(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose that f has the intermediate value property on an interval J, that g has the intermediate value property on an interval I and that g(I) is a subset of J. Prove that f°g has intermediate value property on I.

2. Relevant equations

3. The attempt at a solution

I think I might have simplified too much and missed the point. Here is my work so far...

Since f has IVP on J, there is an a,b in J and a≠b and v is a number between f(a) and f(b) such that there is a c between a and b that f(c)=v.

Similarly for g, there is a e,f in I and e≠f and u is a number between g(e) and g(f) such that there is a d between e and f that g(d)=u.

Since g(I) is a subset of J, f(g(I)) is a subset of f(J).

Then f(g(e)) and f(g(f)) are numbers such that f(g(e))≠f(g(f)). Since g(d)=u is between e and f, then f(u) is between f(g(e) and f(g(f)) since f has IVP on J.

∴f°g has IVP on I.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Showing IVP with composition of functions

**Physics Forums | Science Articles, Homework Help, Discussion**