Showing piece-wise function continuous

Click For Summary
The discussion centers on the continuity of a piece-wise function, specifically addressing the notation for f(x) = cos x on the interval [π/4, ∞). Participants debate whether to include the point π/4 in the explanation of continuity. While some argue that stating everything is important for clarity, others believe it can be omitted for brevity. The consensus suggests that while it's generally good practice to include all relevant points, in this case, the omission of π/4 does not hinder understanding. Overall, clarity and the balance between thoroughness and conciseness are emphasized in mathematical communication.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1680662250322.png
,
The solution is,
1680662269391.png

However, should they not write ##f(x) = \cos x## on ##[\frac{pi}{4}, \infty)##

Many thanks!
 
Last edited by a moderator:
Physics news on Phys.org
Do you mean right after the "Similarly,"? It wouldn't hurt, but I think that it is easy enough to follow the logic without saying that. Initially, you should be in the habit of stating everything. After a while, that becomes tedious and both you and the reader will be happy if you skip obvious things. You must be careful though, what you skip.
 
  • Like
Likes member 731016
FactChecker said:
Do you mean right after the "Similarly,"? It wouldn't hurt, but I think that it is easy enough to follow the logic without saying that. Initially, you should be in the habit of stating everything. After a while, that becomes tedious and both you and the reader will be happy if you skip obvious things. You must be careful though, what you skip.
Thank you for you reply @FactChecker!

No sorry I meant right after the "Since f(x) = Sinx on ..."

Many thanks!
 
ChiralSuperfields said:
Thank you for you reply @FactChecker!

No sorry I meant right after the "Since f(x) = Sinx on ..."

Many thanks!
Oh. The reason for not including the point ##\pi/4## is that the rest of the sentence is only about continuity on ##(-\infty, \pi/4)\cup(\pi/4, \infty)##. So there was no need to include ##\pi/4##. It wouldn't have hurt to include it.
 
  • Like
Likes member 731016
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...