Showing that an element has order 2 if product of 2-cycles

  • Thread starter Thread starter Mr Davis 97
  • Start date Start date
  • Tags Tags
    Element Product
Click For Summary
An element in the symmetric group S_n has order 2 if and only if its cycle decomposition consists of commuting 2-cycles. The proof begins by showing that if the order of a permutation σ is 2, then its cycle decomposition must include at least one 2-cycle, leading to a product of disjoint 2-cycles. Conversely, if σ is expressed as a product of commuting 2-cycles, the least common multiple of their orders confirms that σ has order 2. The discussion highlights the importance of disjoint cycles and the necessity of defining cycle decomposition clearly to avoid confusion. Overall, both directions of the proof are validated, emphasizing the significance of commutation and disjointness in cycle decomposition.
Mr Davis 97
Messages
1,461
Reaction score
44

Homework Statement


Show that an element has order 2 in ##S_n## if and only if its cycle decomposition is a product of commuting 2-cycles.

Homework Equations

The Attempt at a Solution


Suppose that ##\sigma \in S_n## and ##| \sigma | =2##. Let the cycle decomposition of ##\sigma## be the following: ##\sigma = c_1 c_2 \dots c_m##. Then ##| \sigma | = lcm (|c_1|, |c_2|, \dots , |c_m|) = 2##. This is the case only if the ##|c_i| = 1## or ##|c_i| = 2## with at least one such that ##|c_i| = 2##. Hence ##\sigma## is a product of disjoint 2-cycles.
\Now, suppose that the cycle decomposition of ##\sigma## is a product of commuting 2-cycles: ##\sigma = c_1 c_2 \dots c_m##, where ##|c_1| = \cdots = |c_m| = 2##. Then ##| \sigma | = lcm (|c_1|, |c_2|, \dots, |c_m|) = lcm (2,2, \dots, 2) = 2##.

Is this at all a correct proof? Is there a way to do this without assuming a permutation can be decomposed uniquely into disjoint cycles, or that the order of a permutation is the least common multiple of the orders of the cycles in is decomposition?
 
Physics news on Phys.org
This works if you have previously shown that ##|\sigma| = \operatorname{lcm}(|c_i|)##. The cleaner way is to just use that the ##c_i## have order 2 (which is trivial to show) and that, since they commute, ##\sigma^2 = c_1^2 c_2^2 \ldots c_m^2 = e^m = e##.
 
Mr Davis 97 said:

Homework Statement


Show that an element has order 2 in ##S_n## if and only if its cycle decomposition is a product of commuting 2-cycles.

Homework Equations

The Attempt at a Solution


Suppose that ##\sigma \in S_n## and ##| \sigma | =2##. Let the cycle decomposition of ##\sigma## be the following: ##\sigma = c_1 c_2 \dots c_m##. Then ##| \sigma | = lcm (|c_1|, |c_2|, \dots , |c_m|) = 2##. This is the case only if the ##|c_i| = 1## or ##|c_i| = 2## with at least one such that ##|c_i| = 2##. Hence ##\sigma## is a product of disjoint 2-cycles.
Why do they have to be disjoint, resp. why is ##(12)(23)## no cycle decomposition? And you can eliminate the identities by simply demanding ##c_i \neq 1##.
\Now, suppose that the cycle decomposition of ##\sigma## is a product of commuting 2-cycles: ##\sigma = c_1 c_2 \dots c_m##, where ##|c_1| = \cdots = |c_m| = 2##. Then ##| \sigma | = lcm (|c_1|, |c_2|, \dots, |c_m|) = lcm (2,2, \dots, 2) = 2##.
As @Orodruin has said, a simple calculation of ##\sigma^2## is easier. It also has the big advantage, that you actually see, why the commutation part is essential!
 
fresh_42 said:
Why do they have to be disjoint, resp. why is ##(12)(23)## no cycle decomposition? And you can eliminate the identities by simply demanding ##c_i \neq 1##.

As @Orodruin has said, a simple calculation of ##\sigma^2## is easier. It also has the big advantage, that you actually see, why the commutation part is essential!
Don't they have to be disjoint 2-cycles since I demanded to being with that the cycle decomposition of ##\sigma## is a product of disjoint cycles?
So I see how the backward direction is easier by just assuming they commute and raising the product to a power of 2. But is the forward direction okay? How could I show the forward direction without the use of the result ##|\sigma| = \operatorname{lcm}(|c_i|)##?
 
Mr Davis 97 said:
Don't they have to be disjoint 2-cycles since I demanded to being with that the cycle decomposition of ##\sigma## is a product of disjoint cycles?
Yes, but only implicit in the word "cycle decomposition". Since you haven't filled out part two of the template which I personally consider even more important than part three, although our rules lay emphasis on own effort, you have to rely on the fact that everybody knows, that ##(12)(23)## isn't a decomposition whereas ##(123)## is. I think you should have mentioned this somewhere because it is crucial for the proof.
So I see how the backward direction is easier by just assuming they commute and raising the product to a power of 2. But is the forward direction okay? How could I show the forward direction without the use of the result ##|\sigma| = \operatorname{lcm}(|c_i|)##?
Both directions are correct, since you already have proven ##|\sigma \tau|=\operatorname{lcm}\{\,|\sigma | , |\tau | \,\}## in case ##[\sigma,\tau]=1## and disjoint permutations commute. However, both facts are necessary for your way to prove it - plus a proper definition of a cycle decomposition. You see, there are many hidden statements, which you all assumed to be known.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K