- #1

- 1,462

- 44

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- I
- Thread starter Mr Davis 97
- Start date

- #1

- 1,462

- 44

- #2

- 16,417

- 15,456

Let's say we have the following order: ##n = \sigma^r (n)= (c_1c_2 \dots c_k)^r(n)= (c_1^r(c_2^r( \dots (c_k^r)(n)\ldots )##. Now assume ##n## is one of the numbers, which are transformed by ##c_k##. What can you say about ##c_k^r(n)## and why?

- #3

- 1,462

- 44

Well either ##c_k^r = 1## or ##c_k^r = (c_1^rc_2^r \dots c_{k-1}^r)^{-1} \ne 1##, but the latter is not possible because the cycles, their powers, and their inverses are all disjoint?Let's say we have the following order: ##n = \sigma^r (n)= (c_1c_2 \dots c_k)^r(n)= (c_1^r(c_2^r( \dots (c_k^r)(n)\ldots )##. Now assume ##n## is one of the numbers, which are transformed by ##c_k##. What can you say about ##c_k^r(n)## and why?

- #4

- 16,417

- 15,456

- #5

- 1,462

- 44

Well... If ##C_k^r = (c_1^rc_2^r \dots c_{k-1}^r)## and ##c_k^r## are disjoint, then if ##n## is transformed by ##c_k^r## then ##C_k^r## can't possibly transform ##c_k^r(n)## back to ##n## (since we know ##C^r_k c^r_k = 1##, ##C^r_k## would have to). So ##c_k^r = 1##.

- #6

- 16,417

- 15,456

You're thinking far too complicated. Say we have two disjoint permutations ##\sigma , \tau##. Now assume that ##\tau(n) = m##. So we have ##\sigma (\tau (n)) = \sigma (m)##. Do we already know the result of ##(\sigma \tau)(n)\,?##Well... If ##C_k^r = (c_1^rc_2^r \dots c_{k-1}^r)## and ##c_k^r## are disjoint, then if ##n## is transformed by ##c_k^r## then ##C_k^r## can't possibly transform ##c_k^r(n)## back to ##n## (since we know ##C^r_k c^r_k = 1##, ##C^r_k## would have to). So ##c_k^r = 1##.

Share: