Showing that B has no discontinuities at the surface

Click For Summary

Discussion Overview

The discussion revolves around the continuity of the magnetic field ##\mathbf{B}## at the surface of a magnetic dipole distribution characterized by magnetization ##\mathbf{M}##. Participants explore the implications of magnetic fields, surface magnetization, and the behavior of the fields at boundaries, with a focus on theoretical aspects of magnetostatics.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents the potential and magnetic fields in terms of volume and surface contributions, noting that the ##\mathbf{H}## field has no discontinuity while the ##\mathbf{H}^{S}## and ##\mu_0 \mathbf{M}## exhibit discontinuities at the surface.
  • Another participant suggests that the normal component of ##\mathbf{B}## must be continuous due to the divergence-free condition of magnetic fields, questioning the role of ##\rho## and ##\sigma## in the context of surface magnetization.
  • A different participant asserts that while the normal component of ##\mathbf{B}## is continuous, the tangential component may not be, indicating potential discontinuities in the tangential component of ##\mathbf{B}##.
  • One participant explains that the tangential component of ##\mathbf{H}## can have singularities due to surface currents, providing an example of a homogeneously magnetized sphere and discussing the implications of surface current densities on the magnetic fields.

Areas of Agreement / Disagreement

Participants generally agree that the normal component of the magnetic field ##\mathbf{B}## is continuous at the surface. However, there is disagreement regarding the continuity of the tangential component, with some suggesting potential discontinuities due to surface currents.

Contextual Notes

Participants express uncertainty regarding the definitions and roles of ##\rho## and ##\sigma## in relation to surface magnetization, and the implications of singularities in the context of surface current densities are discussed without reaching a consensus on their effects on the magnetic fields.

Mike400
Messages
59
Reaction score
6
Consider a magnetic dipole distribution in space having magnetization ##\mathbf{M}##. The potential at any point is given by:

##\displaystyle\psi=\dfrac{\mu_0}{4 \pi} \int_{V'} \dfrac{ \rho}{|\mathbf{r}-\mathbf{r'}|} dV' + \dfrac{\mu_0}{4 \pi} \oint_{S'} \dfrac{\sigma}{|\mathbf{r}-\mathbf{r'}|} dS'=\psi^{V}+\psi^{S}##

The ##\mathbf{H}## field is:

##\displaystyle\mathbf{H}=\dfrac{\mu_0}{4 \pi} \int_{V'} \rho \dfrac{\mathbf{r}-\mathbf{r'}}{|\mathbf{r}-\mathbf{r'}|^3} dV' + \dfrac{\mu_0}{4 \pi} \oint_{S'} \sigma \dfrac{ \mathbf{r}-\mathbf{r'}}{|\mathbf{r}-\mathbf{r'}|^3} dS'=\mathbf{H}^{V}+\mathbf{H}^{S}##

The ##\mathbf{B}## field is:

##\mathbf{B}=\mathbf{H} + \mu_0 \mathbf{M}=\mathbf{H}^{V} + \mathbf{H}^{S} + \mu_0 \mathbf{M}##

##\mathbf{H}^{V}## has no discontinuity.

##\mathbf{H}^{S}## has discontinuity of ##\mu_0 \mathbf{M} \cdot \hat{n}## at the surface ##S'##

##\mu_0 \mathbf{M}## has discontinuity of ##\mu_0 \mathbf{M}## at the surface ##S'##

From these knowledge, how shall one deduce that ##\mathbf{B}## is continuous at the surface?

My try: (I am getting a contradiction)

We need to show that ##\mu_0 \mathbf{M} \cdot \hat{n}+\mu_0 \mathbf{M}=0##, i.e. ##\mathbf{M} \cdot \hat{n}= -\mathbf{M}##
Since the surface could be oriented at any angle w.r.t. ##\mathbf{M}## at the surface, this is a contradiction. Where am I going wrong?
 
Physics news on Phys.org
I guess what you mean is that due to
$$\vec{\nabla} \cdot \vec{B}=0$$
##\vec{B}##'s normal component at the surface must be continuous.

I'm also a bit lost what ##\rho## and ##\sigma## have to do with ##\vec{M}##. Without a surface magnetization (which is a bit unusual; I'm not sure, where one would find such a thing in nature) the correct solution of magnetostatics of a (hard) ferro magnet is
$$\vec{H}=-\vec{\nabla} \phi$$
with
$$\phi(\vec{x})=-\vec{\nabla}_x \cdot \int_{\mathbb{R}} \mathrm{d}^3 x' \frac{\vec{M}(\vec{x}')}{4 \pi |\vec{x}-\vec{x}'|}.$$
 
  • Informative
Likes   Reactions: Dale
vanhees71 said:
##\vec{B}##'s normal component at the surface must be continuous.
I know that and can be simply deduced from the equation ##\mathbf{B}=\mathbf{H} + \mu_0 \mathbf{M}=\mathbf{H}^{V} + \mathbf{H}^{S} + \mu_0 \mathbf{M}##. But should the tangential component of ##\vec{B}## must be continuous too? The equation shows a discontinuity in the tangential component.

vanhees71 said:
I'm also a bit lost what ##ρ## and ##σ## have to do with ##\vec{M}##
##ρ=-\nabla \cdot \mathbf{M}## and ##σ=\mathbf{M} \cdot \hat{n}##
 
Last edited:
The tangential component of ##\vec{H}## can have a singularity due to a surface current, and usually also ##\vec{B}## has one there too.

The standard example is a homogeneously magnetized body. The magnetization is equivalent to a current density
$$\vec{j}_{\text{m}}=\vec{\nabla} \times \vec{M},$$
and in this approximation that's a surface current density.

E.g., take a homogeneously magnetized sphere of radius ##a## around the origin of the coordinate system. Then we can write (with ##r=|\vec{x}|##)
$$\vec{M}(\vec{x})=M \vec{e}_3 \Theta(a-r).$$
The curl is
$$\vec{\nabla} \times \vec{M}=-M \vec{e}_3 \times \vec{\nabla} \Theta(a-r).$$
Now
$$\vec{\nabla} \Theta(a-r)=\frac{\mathrm{d}}{\mathrm{d} r} \Theta(a-r) \vec{\nabla r} = -\frac{\vec{x}}{r} \delta(a-r)=-\frac{\vec{x}}{a} \delta(a-r)$$
and thus
$$\vec{j}_{\text{m}}=\frac{M}{a} \vec{e}_3 \times \vec{x} \delta(r-a),$$
i.e., you have ##\delta##-function like singularity across the surface of the sphere which means that there's a surface-current density.

It's a good example to calculate the magnetic displacement ##\vec{H}## and the magnetic field ##\vec{B}## for this example, which is analytically solvable. Then the concepts of charge and current densities as well as their singular cases, i.e., surface charge and current densities become clear.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K