Read about magnetic flux density | 13 Discussions | Page 1

  1. The forgetful one

    Magnetic flux density of a relativistic electron

    q = 1.602e-19C mass_electron = 1.098e27 c = 3e8 Omega(Mag_flux_den) = 5GHz Lorentz factor = 100 synchrotron radiation at frequency v = 5GHz Mag_flux_den = (Omega(Mag_flux_den) * c * Mass_electron * Lorentz factor) / mass_electron Mag_flux_den = (5000 x 3e8 x 1.098e27 x 100 ) / 1.602e-19 =...
  2. Beelzedad

    I Why am I getting Maxwell's second equation wrong?

    While going through an article titled "Reflections in Maxwell's treatise" a misunderstanding popped out at page 227 and 228. Consider the following equations ##(23\ a)## and ##(23\ c)## in the article (avoiding the surface integral): ##\displaystyle \psi_m (\mathbf{r})=-\dfrac{1}{4 \pi} \int_V...
  3. M

    I Showing that B has no discontinuities at the surface

    Consider a magnetic dipole distribution in space having magnetization ##\mathbf{M}##. The potential at any point is given by: ##\displaystyle\psi=\dfrac{\mu_0}{4 \pi} \int_{V'} \dfrac{ \rho}{|\mathbf{r}-\mathbf{r'}|} dV' + \dfrac{\mu_0}{4 \pi} \oint_{S'}...
  4. G

    I Ratio of the Electric field to the Magnetic field

    Dear all. I would like to know the general expression of the ratio of the electric field strength E to the magnetic flux density B. I know E/B = c, where c is the speed of light, for a vacuum, but I want to know if this is stil valid for any material where the electric and magnetic fields are...
  5. W

    The magnetic flux density at point P between parallel wires

    Homework Statement In the picture at points A and B are two thin parallel wires, where travelling currents are 15 A and 32 A to opposite directions. The distance between wires is 5.3 cm. Point's P distances from A and B are the same. Calculate the magnetic flux density at point P. Homework...
  6. T

    B Temperature and magnetic flux density

    Hello all; I am new in this forum, currently in High School. For some time now, I have been looking online for a relationship between temperature and magnetic flux density of a ferromagnet; below the Curie point. However, I can't seem to find any relationship or formula. Do any of you know...
  7. B

    I Magnetic Dipole Field from a Loop of Wire

    I am trying to understand the magnetic dipole field via loop of wire. The above pictures show how this problem is typically setup and how the field lines are typically shown. The math is messy but every textbook yields the following: β = ∇xA = (m / (4⋅π⋅R3)) ⋅ (2⋅cos(θ) r + sin(θ) θ) The...
  8. moenste

    Find direction of current in a magnetic field

    Homework Statement The diagram shows a uniform magnetic flux density B in the plane of the paper. Q and R mark the points where two long, straight and parallel wires carry the same current, I, in the same direction and perpendicular to the paper. The line through QR is at right angles to the...
  9. Arkthanon

    The Magnetic Force on an Iron Ring

    I decided to simulate this scene in Lord of the Rings for a project in school with the purpose of calculating the "real" mass of the One Ring. I've done the experiments according to this principle sketch but I have some troubles with calculating the magnetic force that the copper coil is...
  10. A

    I need to create a .7+ Tesla electromagnetic solenoid

    I am trying to create a solenoid with a high flux density, but I need the specifications (wire gauge, current applied, etc). The diameter of the core would be preferable around 15mm. The length can be pretty much anything reasonable. I need this for a project that requires a strong repulsive...
  11. 3

    Calculating magnetic flux density using Biot-Savart law.

    Hello, all. I have been working on the following problem and was wondering if someone could check my work and provide some valuable input: Here is my work: What do you guys think about my approach to this problem?
  12. 3

    Charge passing through a magnetic field of uniform magnetic flux density

    My reasoning: The magnetic force on charge q is Fm = qv x B B does not change |v|. Therefore, |Fm| is constant at time t > 0 and Fm is always perpendicular to the direction of movement of charge q. Fm behaves as a centripetal force, and thus the charge moves along the circumference of a...
  13. B

    Magnetic flux density calculation for high permeability material

    Hi to all of you, As the Biot-Savart-Law is based on experimentations in air, i like to know how to calculate the magnetic flux density in material with much greater permeability, where the circular like shape of the field distribution troughout the vicinity does not apply. Does anyone has a...
Top