MHB Showing that two elements of a linearly independent Set Spans the same set

shen07
Messages
54
Reaction score
0
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
 
Physics news on Phys.org
shen07 said:
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
Note that $v_2$ and $v_3$ are both contained in $\text{span}(\{v_1,v_2\})$ (why?). Thus $\text{span}(\{v_2,v_3\})\subseteq \text{span}(\{v_1,v_2\})$.

Similarly $\text{span}(\{v_1,v_2\})\subseteq \text{span}(\{v_2,v_3\})$.

Therefore $\text{span}(\{v_1,v_2\})=\text{span}(\{v_2,v_3\})$.
 
In general, if you have two sets of vectors $A$ and $B$ and every vector of $B$ is expressible through vectors of $A$, then $\mathop{\text{span}}(B)\subseteq \mathop{\text{span}}(A)$.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top