MHB Showing that two elements of a linearly independent Set Spans the same set

shen07
Messages
54
Reaction score
0
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
 
Physics news on Phys.org
shen07 said:
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
Note that $v_2$ and $v_3$ are both contained in $\text{span}(\{v_1,v_2\})$ (why?). Thus $\text{span}(\{v_2,v_3\})\subseteq \text{span}(\{v_1,v_2\})$.

Similarly $\text{span}(\{v_1,v_2\})\subseteq \text{span}(\{v_2,v_3\})$.

Therefore $\text{span}(\{v_1,v_2\})=\text{span}(\{v_2,v_3\})$.
 
In general, if you have two sets of vectors $A$ and $B$ and every vector of $B$ is expressible through vectors of $A$, then $\mathop{\text{span}}(B)\subseteq \mathop{\text{span}}(A)$.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top