MHB Showing that two elements of a linearly independent Set Spans the same set

shen07
Messages
54
Reaction score
0
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
 
Physics news on Phys.org
shen07 said:
Hi, i would like to have a hint for the following problem:

Let $$v_1, v_2 \&\ v_3 $$ in a vector space V over a field F such that$$ v_1+v_2+v_3=0$$, Show that $\{v_1,v_2\}$ spans the same subspace as $\{v_2,v_3\}$

Thanks in advance
Note that $v_2$ and $v_3$ are both contained in $\text{span}(\{v_1,v_2\})$ (why?). Thus $\text{span}(\{v_2,v_3\})\subseteq \text{span}(\{v_1,v_2\})$.

Similarly $\text{span}(\{v_1,v_2\})\subseteq \text{span}(\{v_2,v_3\})$.

Therefore $\text{span}(\{v_1,v_2\})=\text{span}(\{v_2,v_3\})$.
 
In general, if you have two sets of vectors $A$ and $B$ and every vector of $B$ is expressible through vectors of $A$, then $\mathop{\text{span}}(B)\subseteq \mathop{\text{span}}(A)$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
Replies
6
Views
1K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 39 ·
2
Replies
39
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K