etotheipi
PeroK said:This business of positive and negative values is not the issue. In terms of the physics, you start with the concept that a vector has, in some physical sense, a direction. In classical physics, that means a direction in 3D space. Mathematically this is called a directed line segment. In that sense, a vector is defined by a directed line segment.
Right, though in that case even for one dimensional motion we'd require ##\vec{F} = m\vec{a}##, where ##\vec{F} = F\hat{x}## and ##\vec{a} = a\hat{x}##. First we need to get all of our forces in terms of ##\hat{x}##, which essentially defines the positive direction along the chosen axis.
I suppose then you could "cancel" ##\hat{x}## and end up with an equation containing ##F## and ##a##. And by playing around for a little bit (proof by a few examples... my favourite method), I think it's the case that anyone dimensional situation can be described completely in terms of the components. Same goes for rotational dynamics; I don't often write ##\theta \hat{z} = \omega t \hat{z} ##, but just use the component terms.
In this vein, I don't think it makes sense to simply state ##F_{x} = ma_{x}## on its own without 'obtaining it' from the above sort of logic. Otherwise, the two quantities are completely undefined - the components cannot exist without the force vector!