Simple particle on slope confusion

Click For Summary
The discussion centers on the confusion regarding calculating the velocity of a particle on a frictionless slope using two different methods. The initial approach involved using the constant acceleration formula, yielding a velocity of v = sqrt(2gl*sin(theta)). The second method, which involved integrating acceleration over time, initially seemed to produce a different result, leading to uncertainty. Upon further examination, it was revealed that both methods yield the same result when properly evaluated. The confusion arose from a miscalculation during the verification process, which was clarified through peer assistance.
rmawatson
Messages
3
Reaction score
0

Homework Statement


a particle on a slope with angle theta with no friction. v(0) = 0, x(0) = 0, with coordinates i down the slope and j normal to it.

I am confused about why with the constant velocity forumla I get a different answer to my attempted method.. I can't see what's wrong..I need to find the velocity at "l"
x is the top of the slope of a particle on a smooth surface, with no friction,
v(0) = 0, x(0) = 0

along i direction I am starting with:

mgsin(theta) == ma

gsin(theta) == a

using constant acceleration formula

v^2 = v0^2 + 2a0(x-x0)
v^2 = 0 + 2gsin(theta)(x-0)
v = sqrt( 2gl*sin(theta) )

My original attempt below is wrong, but I can't see why. I want to know what it doesn't work the same.

so from
gsin(theta) == a

Integrating wrt t

gsin(theta)t == v + c

Integrating wrt t again

1/2*gsin(theta)t^2 == x + ct + d

with v(0) == 0 and x(0) == 0

0 = c and d = 0

so if I now plugged in 'l' to the equation for position

1/2*gsin(theta)t^2 == l

and solve for t I get,

t = sqrt[ (2l)/(gsin(theta)) ]

so this is the time at which position == l ?

If I then plug this time into the equation for velocity,

gsin(theta)t == v

gsin(theta)*sqrt[ (2l)/(gsin(theta)) ] = v

not the same as with the constant velocity forumla..
why ? what is wrong with this method

Thanks for any help
 
Physics news on Phys.org
rmawatson said:

Homework Statement


a particle on a slope with angle theta with no friction. v(0) = 0, x(0) = 0, with coordinates i down the slope and j normal to it.

I am confused about why with the constant velocity forumla I get a different answer to my attempted method.. I can't see what's wrong..I need to find the velocity at "l"
x is the top of the slope of a particle on a smooth surface, with no friction,
v(0) = 0, x(0) = 0

along i direction I am starting with:

mgsin(theta) == ma

gsin(theta) == a

using constant acceleration formula

v^2 = v0^2 + 2a0(x-x0)
v^2 = 0 + 2gsin(theta)(x-0)
v = sqrt( 2gl*sin(theta) )

My original attempt below is wrong, but I can't see why. I want to know what it doesn't work the same.

so from
gsin(theta) == a

Integrating wrt t

gsin(theta)t == v + c

Integrating wrt t again

1/2*gsin(theta)t^2 == x + ct + d

with v(0) == 0 and x(0) == 0

0 = c and d = 0

so if I now plugged in 'l' to the equation for position

1/2*gsin(theta)t^2 == l

and solve for t I get,

t = sqrt[ (2l)/(gsin(theta)) ]

so this is the time at which position == l ?

If I then plug this time into the equation for velocity,

gsin(theta)t == v

gsin(theta)*sqrt[ (2l)/(gsin(theta)) ] = v

not the same as with the constant velocity forumla..
why ? what is wrong with this method

Hello rmawatson. Welcome to PF!

Those answers are the same !
 
If I plug in numbers I get a different answer for both??
 
rmawatson said:
If I plug in numbers I get a different answer for both??
Example ... ?
 
Looks like I did something wrong when I checked it. I was so sure that my formula must be wrong (as it was a different way to the book and done by me) I didn't check twice.

You are right, and with some simple rearranging it comes out the same... thank you for your help.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 26 ·
Replies
26
Views
3K
Replies
13
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K