Simple question about differentiation of trigonometric function

  • #1
285
13
20160523_143427.jpg

Explain to me:

Why the 2πf came in front?

I lost touch and sort of forgot.
 
Last edited by a moderator:
Physics news on Phys.org
  • #2
This is the derivation differentiation chain rule: [tex]\frac{df(g(x))}{dx}=\frac{df}{dg}\cdot\frac{dg}{dx}[/tex]
Edited by mentor...
 
Last edited by a moderator:
  • #3
could you please show me how this works with my example
 
  • #4
In your case ##x=t##, ##f(x)=cos(x)##, ##g(x)=2\pi f x## and ##f(g(x))=(f\circ g)(x)=cos(2\pi f x)##.
 
  • #5
Another way to demonstrate it is:

##d/dt ( cos (2 * \pi * f * t) ) = ##

## = - sin ( 2 * \pi * f * t ) * d/dt ( 2 * \pi * f * t ) ##

## = - sin ( 2 * \pi * f * t ) * ( 2 * \pi * f ) ##

## = - ( 2 * \pi * f * t ) * sin ( 2 * \pi * f * t ) ##
 
  • #6
General formula. Let f'(x)=g(x), then f'(ax)=ag(ax).
 

Suggested for: Simple question about differentiation of trigonometric function

Replies
4
Views
286
Replies
1
Views
612
Replies
16
Views
1K
Replies
5
Views
1K
Replies
1
Views
3K
Replies
20
Views
343
Replies
5
Views
817
Replies
3
Views
499
Replies
46
Views
3K
Back
Top