Simplify cos(a)cos(2a)cos(3a)....cos(999a) if a=(2pi)/1999

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Simplify
Click For Summary
SUMMARY

The simplification of the product cos(a)cos(2a)cos(3a)...cos(999a) where a=(2π)/1999 results in the expression 1/2^500[(cos(100a)+cos(998a))(cos(100a)+cos(996a))...]. The roots of the polynomial derived from Chebyshev's formula yield that the product of cosines can be expressed as ±1/2^n. The final result indicates that the product is influenced by the parity of n, specifically for n=999, leading to the conclusion that the product equals (-1)^(499500)/2^999.

PREREQUISITES
  • Understanding of trigonometric identities and properties of cosine functions
  • Familiarity with Chebyshev polynomials and their applications
  • Knowledge of polynomial root products and their implications
  • Basic grasp of mathematical induction and parity arguments
NEXT STEPS
  • Study Chebyshev's formula for multiple angle cosines in detail
  • Learn about polynomial root products and their significance in trigonometric simplifications
  • Explore the implications of parity in mathematical expressions and products
  • Investigate advanced trigonometric identities and their proofs
USEFUL FOR

Mathematicians, students studying advanced trigonometry, and anyone interested in simplifying complex trigonometric products.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Simplify cos(a)cos(2a)cos(3a)...cos(999a) if a=(2pi)/1999

I don't see any way to approach this problem but my attempt is to group cos(a).cos(999a), then cos(2a).cos(998a), and so on.
Then I get 500 pairs where the first two pairs are 1/2[cos(100a)+cos(998a)] and 1/2[cos(100a)+cos(996a)], and etc.
Next, I see that cos(a)cos(2a)cos(3a)...cos(999a)= 1/2^500[[cos(100a)+cos(998a)][cos(100a)+cos(996a)][cos(100a)+cos(994a)][...].
Now, I'm stuck. I don't know how to proceed.
Any help, please?
 
Mathematics news on Phys.org
anemone said:
Simplify cos(a)cos(2a)cos(3a)...cos(999a) if a=(2pi)/1999

I don't see any way to approach this problem but my attempt is to group cos(a).cos(999a), then cos(2a).cos(998a), and so on.
Then I get 500 pairs where the first two pairs are 1/2[cos(100a)+cos(998a)] and 1/2[cos(100a)+cos(996a)], and etc.
Next, I see that cos(a)cos(2a)cos(3a)...cos(999a)= 1/2^500[[cos(100a)+cos(998a)][cos(100a)+cos(996a)][cos(100a)+cos(994a)][...].
Now, I'm stuck. I don't know how to proceed.
Any help, please?
(This problem cropped up in the dying days of the Math Help Forum. I'll have to reconstruct an outline of the solution.)

Here's how to compute the product $\displaystyle \prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1} = \cos a\cos2a\cdots\cos na$, where $a = \tfrac{2\pi}{2n+1}.$

To start with, notice that the numbers $\theta = \tfrac{2k\pi}{2n+1}\ (0\leq k\leq 2n)$ are the solutions of the equation $\cos(2n+1)\theta = 1.$ Chebyshev's formula for multiple angle cosines says that $\cos(2n+1)\theta$ is a polynomial of degree $2n+1$ in $\cos\theta$, of the form $$\cos(2n+1)\theta = 2^{2n}\cos^{2n+1}\theta + \ldots \pm(2n+1)\cos\theta.$$ Put $x = \cos\theta$ to see that numbers $\cos\tfrac{2k\pi}{2n+1}\ (0\leq k\leq 2n)$ are the solutions of the equation $$2^{2n}x^{2n+1} + \ldots \pm(2n+1)x - 1 = 0.\quad(*)$$ One of these solutions (corresponding to $k=0$) is $x=1$. The other roots come in pairs, because of the fact that $\cos\varphi = \cos(2\pi-\varphi).$ Thus the roots of $(*)$ are $x=1$ (occurring once), together with the numbers $\cos\tfrac{2k\pi}{2n+1}\ (1\leq k\leq n)$ (occurring twice each). But the product of the roots of $(*)$ is $1/2^{2n}.$ It follows that $\displaystyle \prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1} = \pm\frac1{2^n}.$

The final part of the calculation is to decide whether to take the plus or the minus sign in that formula. Notice that $\cos\theta$ is positive if $0\leq\theta<\pi/2$, and negative if $\pi/2<\theta\leq\pi$. In the above product, roughly the first half of the terms will be positive and the second half will be negative. For small values of n, you can check that the sign is given as in this table: $$\begin{array}{c|c|c|c|c|c|c|c}n&1&2&3&4&5&6&7\\ \hline \text{sign}&-&-&+&+&-&-&+ \end{array}$$ I'll leave you to work out what it should be for $n=999.$
 
Thanks, Opalg!

You approach is so easy to follow and I like it very much.
But it's also going uphill to the point where I don't understand why the following is true.:confused:

But the product of the roots of $(*)$ is $1/2^{2n}.$ It follows that $\displaystyle \prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1} = \pm\frac1{2^n}.$

Could you please elaborate on that one?
Thanks again.
 
anemone said:
I don't understand why the following is true.:confused:

Opalg said:
But the product of the roots of $(*)$ is $1/2^{2n}.$ It follows that $\displaystyle \prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1} = \pm\frac1{2^n}.$
Could you please elaborate on that one?
The roots of $(*)$ are $\cos\tfrac{2k\pi}{2n+1}\ (1\leq k\leq n)$ (occurring twice each), together with 1. So their product is $\displaystyle \Bigl(\prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1}\Bigr)^{\!\!\!2}.$ But the product of the roots of a polynomial of odd degree is the negative of the constant term divided by the coefficient of the leading term. Therefore $\displaystyle \Bigl(\prod_{k=1}^n \cos\tfrac{2k\pi}{2n+1}\Bigr)^{\!\!\!2} = \frac1{2^{2n}}.$ Now you just have to take the square root of both sides.
 
With the awesome explanation, there's no reason to say that I don't understand!:D
BIG thanks to you, Opalg!
Also, big thanks to this site!:cool:
 
Here's what I tried:

From $\displaystyle(2n+1-(2k-1))a=(2n+1-(2k-1))\frac{2\pi}{2n+1}=2\pi-(2k-1)\frac{2\pi}{2n+1}=2\pi-(2k-1)a$, it follows that $\sin{(2n+1-(2k-1))a}=\sin(-(2k-1)a)=-\sin{(2k-1)a}$. So we simply have, $\displaystyle\frac{\sin{(2n+1-(2k-1))a}}{{\sin(2k-1)a}}=-1$(*).The identity $\sin(2\alpha)=2\sin(\alpha)\cos(\alpha)$, or $\displaystyle \cos(\alpha)=\frac{1}{2}\frac{\sin(2\alpha)}{\sin(\alpha)}$ gives:\[\prod_{1\leq k\leq n}\cos(ka)=\prod_{1\leq k\leq n}\frac{1}{2}\frac{\sin(2ka)}{\sin(ka)}=\frac{1}{2^n}\prod_{1\leq k\leq n}\frac{\sin(2ka)}{\sin(ka)}=\frac{\sin(2a)}{\sin(1a)}\cdot\frac{\sin(4a)}{\sin(2a)}\cdot\frac{\sin(6a)}{\sin(3a)}\cdot\frac{\sin(8a)}{\sin(4a)}\cdots\frac{\sin(2na)}{\sin(na)},\]where the RHS product $A_n$ (without $\displaystyle\frac{1}{2^n}$) after cancellation is something like (for $n=6$)$\displaystyle A_6=\frac{\sin(2a)}{\sin(1a)}\cdot \frac{\sin(4a)}{\sin(2a)}\cdot\frac{\sin(6a)}{\sin(3a)}\cdot\frac{\sin(8a)}{\sin(4a)}\cdot\frac{\sin(10a)}{\sin(5a)}\cdot\frac{\sin(12a)}{\sin(6a)}= \frac{1}{\sin(1a)} \cdot\frac{1}{1}\cdot\frac{1}{\sin(3a)}\cdot\frac{\sin(8a)}{1}\cdot\frac{\sin(10a)}{\sin(5a)} \cdot\frac{\sin(12a)}{1}=\frac{\sin(8a)}{\sin(1a)}\cdot\frac{\sin(10a)}{\sin(3a)} \frac{\sin(12a)}{\sin(5a)}$.Rearanging the numerator, we get: \[A_n=\displaystyle \frac{\sin(2na)}{\sin(1a)}\cdot\frac{\sin((2n-2)a)}{\sin(3a)}\cdot\frac{\sin((2n-4)a)}{\sin(5a)}\cdots=\frac{\sin{(2n+1-1)a}}{{sin1a}}\cdot\frac{\sin{(2n+1-3)a}}{{\sin3a}}\cdots\frac{\sin{(2n+1-(2t-1))a}}{{\sin(2t-1)a}}=\prod_{1\leq k\leq t}\frac{\sin{(2n+1-(2k-1))a}}{{\sin(2k-1)a}},\] where (by inspection) $t=\lfloor (n+1)/2\rfloor$.But then from (*), we immediately find that $A_n=\prod_{1\leq k\leq t}(-1)=(-1)^t$. Finally, $\displaystyle\prod_{1\leq k\leq n}\cos(ka)=\frac{1}{2^n}A_n=\frac{1}{2^n}(-1)^t$.Note: Since $\frac{n(n+1)}{2}$ and $t$ have the same parity, the answer may be written as: $\displaystyle\prod_{1\leq k\leq n}\cos(ka)=\frac{(-1)^{\frac{n(n+1)}{2}}}{2^n}$.

መለሰ
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
15K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K