Simplify $ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1)$

  • Thread starter walker242
  • Start date
  • #1
12
0

Homework Statement


As in title, simplify [tex]ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1)[/tex], x > 0.


Homework Equations


-


The Attempt at a Solution


So far
[tex]ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1) = ln(x(\sqrt{1+e^x}-\sqrt{e^x})(\sqrt{1+e^{-x}}+1)) = ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x}))[/tex].

Is it possible to get further?
 

Answers and Replies

  • #2
35,237
7,057
I worked it through and ended with what you have. I don't see anything more you can do.
 
  • #3
12
0
Thanks. :)
 
  • #4
12
0
Actually, it's possible to get further:

[itex]\ln \left(x \left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1 \right) =
\ln x + \ln\left(\sqrt{1+e^{x}}-\sqrt{e^{x}}\right) + \ln\left(\sqrt{1+e^{-x}}+1\right) =[/itex]

[itex]= \ln x + \ln\left(\left(\sqrt{1+e^{x}}-\sqrt{e^x}\right) \left(\sqrt{1+e^{-x}} + 1\right)\right)
= \ln x + \ln\left(\sqrt{1+e^{x}}\sqrt{1+e^{-x}}+\sqrt{1+e^{x}}-\sqrt{e^{x}}\sqrt{1+e^{-x}}-\sqrt{e^x}\right)[/itex]

[itex]= \ln x + \ln\left(\left(\left(1+e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}}-\left(\left(e^{x}\right)\left(1+e^{-x}\right)\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right) = \ln x + \ln\left(\left(1+e^{-x}+e^{x}+e^{0}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+e^{0}\right)^{\frac{1}{2}}-\left(e^{x}\right)^{\frac{1}{2}}\right)[/itex]

[itex]= \ln x + \ln\left(\left(2+e^{-x}+e^{x}\right)^{\frac{1}{2}} + \left(1+e^{x}\right)^{\frac{1}{2}} - \left(e^{x}+1\right)^{\frac{1}{2}} -\left(e^{x}\right)^{\frac{1}{2}}\right)
= \ln x + \ln\left(\sqrt{\left(2 + e^{-x} + e^{x}\right)} - \sqrt{\left(e^{x}\right)}\right)[/itex]

[itex]= \ln x + \ln\left(\sqrt{\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}}\right)^2} - \sqrt{e^x}\right) = \ln x + \ln\left(e^{\frac{x}{2}} + e^{-\frac{x}{2}} - e^\frac{x}{2}\right)
= \ln x + \ln\left(e^{-\frac{x}{2}}\right) = \ln \left(\frac{x}{e^\frac{x}{2}}\right)[/itex]
 
  • #5
35,237
7,057
You're right. It's also possible to get to your result with much less work.
Here's where the OP ended.
[tex] ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x}))[/tex]
The expression in the first radical happens to be a perfect square trinomial, something I didn't notice earlier.


[tex]2+e^{-x} + e^{x} = e^{x} + 2 + e^{-x} = (e^{x/2} + e^{-x/2})^2[/tex]
The expression being squared is always positive, so we don't have to worry about the negative square root. IOW,
[tex]\sqrt{e^{x} + 2+e^{-x} } = \sqrt{(e^{x/2} + e^{-x/2})^2} = e^{x/2} + e^{-x/2}[/tex]

Here's the complete work.
[tex]ln(x(\sqrt{2+e^{-x} + e^{x}} - \sqrt{e^x}))
= ln(x(e^{x/2} + e^{-x/2} - e^{x/2}))
= ln(xe^{-x/2})
= ln(\frac{x}{e^{x/2}})[/tex]
 
Last edited:

Related Threads on Simplify $ln(x(\sqrt{1+e^x}-\sqrt{e^x})) + ln(\sqrt{1+e^{-x}}+1)$

  • Last Post
Replies
12
Views
38K
  • Last Post
Replies
1
Views
7K
  • Last Post
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
5K
Replies
7
Views
2K
Replies
1
Views
2K
  • Last Post
Replies
5
Views
9K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
1
Views
12K
Top