I Simplify tensor product statement

Albert01
Messages
14
Reaction score
0
Hi,

if I wanted to show ##(Z \otimes Y)^{\dagger} = Z \otimes Y##, then I could simply multiply out the matrices belonging to the operators of quantum gates ##Z## and ##Y##.

But my question is whether this is also solvable via the properties of the tensor product and the properties of the gates.

My approach would be the following:

##(Z \otimes Y)^{\dagger} = Z^{\dagger} \otimes Y^{\dagger}##

holds because this is a property of the tensor product. Continue with

##Z^{\dagger} \otimes Y^{\dagger} = Z \otimes Y##

which holds because ##Z^{\dagger} = Z## and ##Y^{\dagger} = Y## are self-adjoint.

My question, is it possible to do it this way now or did I miss something?
 
Physics news on Phys.org
That seems reasonable although is the product reversed to be Y x Z?

Another approach would be to use Tensor indexing notation and apply the rules. That way you can see the details of what you have.

Have you searched for a proof to see how others have done it?

https://en.wikipedia.org/wiki/Hermitian_matrix
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top