Simplifying terms of Ricci tensor

Click For Summary
The discussion focuses on simplifying the terms of the Ricci tensor, specifically expressing it in a more manageable form. The proposed expression includes the terms g^{\sigma \rho} \nabla_\sigma \nabla_\rho R, R ~R_{\mu\nu}, and -\nabla_\mu \nabla_\nu R. Participants express a desire for more context and details on the work done so far to facilitate further assistance. The conversation highlights the complexity of the Ricci tensor and the need for clarity in mathematical expressions. Overall, the aim is to make the Ricci tensor more accessible for discussion and analysis.
Safinaz
Messages
255
Reaction score
8
Homework Statement
Any help how to simplify these terms of Ricci tensor:
Relevant Equations
##
R_{\alpha\mu} R_{\gamma \nu} g^{\alpha \gamma} + R_{\mu \beta} R_{\nu \delta} g^{\beta \delta} + g^{\alpha \gamma} g^{\beta \delta} \left( R_{\alpha\beta} \frac{ \nabla_\gamma \delta \Gamma^\rho_ {~ \delta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \gamma \delta} }{ \delta g^{\mu\nu} }
+ R_{\gamma\delta} \frac{ \nabla_\alpha \delta \Gamma^\rho_ {~ \beta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \alpha \beta} }{ \delta g^{\mu\nu} } \right)
##
So that they become:

##
g^{\sigma \rho} \nabla_\sigma \nabla_\rho R ~g_{\mu\nu} + R ~R_{\mu\nu} - \nabla_\mu \nabla_\nu R
##
 
Physics news on Phys.org
I'm not of much help but I'm sure that those who might help would like to see what work you've done so far...
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 34 ·
2
Replies
34
Views
4K