Simplifying terms of Ricci tensor

Safinaz
Messages
255
Reaction score
8
Homework Statement
Any help how to simplify these terms of Ricci tensor:
Relevant Equations
##
R_{\alpha\mu} R_{\gamma \nu} g^{\alpha \gamma} + R_{\mu \beta} R_{\nu \delta} g^{\beta \delta} + g^{\alpha \gamma} g^{\beta \delta} \left( R_{\alpha\beta} \frac{ \nabla_\gamma \delta \Gamma^\rho_ {~ \delta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \gamma \delta} }{ \delta g^{\mu\nu} }
+ R_{\gamma\delta} \frac{ \nabla_\alpha \delta \Gamma^\rho_ {~ \beta \rho} - \nabla_\rho \delta \Gamma^\rho_ {~ \alpha \beta} }{ \delta g^{\mu\nu} } \right)
##
So that they become:

##
g^{\sigma \rho} \nabla_\sigma \nabla_\rho R ~g_{\mu\nu} + R ~R_{\mu\nu} - \nabla_\mu \nabla_\nu R
##
 
Physics news on Phys.org
I'm not of much help but I'm sure that those who might help would like to see what work you've done so far...
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top