vanhees71 said:
Quantum theory provides clear ontics.
You are outright disagreeing with all the experts in the world on this matter, but keep telling yourself that if it makes you sleep better at night.
vanhees71 said:
The actual existence of, e.g., elementary particles is not in question by the probabilistic description of QT. An electron actually exists in the description of relativistic QFT and is described by a quantum field. It doesn't exist as visualized by classical physics as a "point particle" of course, but that's because there's progress in science going way beyond a naive picture based on our experience with macroscopic objects which behave, under the circumstances of everyday life, to an excellent approximation as descxribed by classical physics.
This isn't under question at all. I don't see the need to keep bringing it up. Maybe it would be instructive to state that 'practical physics' purely focussed on applications (i.e. physics as an extension of engineering) is pretty much the opposite of 'foundational physics', wherein everything that has been swept under the rug is exposed so that it can be fixed. See the above post #89.
samalkhaiat said:
Why do need to participate in this kind discussions? Let me just tell you that if this Smolin guy gave that talk in London or Oxford/Cambridge, he would be, after 15 minutes, talking to an empty lecture theatre in Oxford/Cambridge or get booed in London.
Again, just because you don't find fundamental physics important, doesn't mean it isn't important.
Smolin actually devotes an entire chapter to discussing what the experts over at Oxford (Deutsch, Greaves, Myrvold, Sauders, Wallace et al.) think about the matter; he refers to their collective stance as critical realism, or more specifically the Oxford interpretation. Oxfordians - like Copenhagenists before them - have the same core belief but disagree to differing degrees on different specific points.
Simply stated, Oxfordians believe that decoherence, a irreversible statistical concept, is completely sufficient to solve the measurement problem. Smolin - like Bell, Shimony, Penrose and
@A. Neumaier before him - keenly demonstrates that this argument is actually insufficient because it introduces observers into the foundations of the theory.
The problem with decoherence as a solution to the measurement problem is that if unitary evolution is fundamental to QT, then complete decoherence is impossible because decohered states will recohere if we wait long enough due to the Poincaré recurrence theorem; this is literally the same reason why entropy can increase.
Now if we are only interested in times shorter than it takes to recohere - that is if we are only interested in an approximate description of measurements for all practical purposes (FAPP) - then decoherence works, but as a matter of principle - i.e. as a question of foundational and mathematical physics - decoherence outright fails as a complete explanation.