Smooth function's set of critical values

  • Thread starter Thread starter EbolaPox
  • Start date Start date
  • Tags Tags
    Set Smooth
Click For Summary
The discussion revolves around proving that the set of critical values of a continuously differentiable function has measure zero. A critical point occurs where the derivative equals zero, and the critical value is the function's output at these points. The approach involves using the Mean Value Theorem to show that the distance between function values at critical points can be made arbitrarily small. By demonstrating that the set of critical points can be covered by intervals where the derivative is small, it follows that the critical values can also be contained within arbitrarily small intervals. This leads to the conclusion that the set of critical values indeed has measure zero.
EbolaPox
Messages
99
Reaction score
1

Homework Statement


Assume that f:[a,b] \rightarrow \mathbb{R} is continuously differentiable. A critical point of f is an x such that f'(x) = 0. A critical value is a number y such that for at least one critical point x, y = f(x). Prove that the set of critical values is a zero set.


Homework Equations


A set Z is said to be a zero set if for each \epsilon there is a countable covering of Z by open intervals (a_i , b_i) such that \sum_{n=1}^\infty} b_i - a_i \leq \epsilon



The Attempt at a Solution


I'm not even sure really where to start with this one. Normally when I start a problem, I always check to make sure that it intuitively makes sense. If we let C be the set of critical points, then the goal is to show f(C) has measure zero, but I really don't see how to approach this problem. I don't really see how to use the fact that the derivative is continuous. I'd love a hint in the right direction to start or something, as this has me pretty baffled. Thanks!
 
Physics news on Phys.org
Try showing that C can be covered by a set of intervals on which |f'(x)|<e for any e>0 for x in any of those intervals. Now if [c,d] is one of those intervals what can you say about |f(x)-f(y)| for x and y in [c,d]? Think mean value theorem. So what can you say about the measure of f([c,d])? Now what happens as you take e->0?
 
Ah! That makes perfect sense! For each e>0 we know the set of points such that |F '(x)| < e , contains our set C. Let [c,d] be a subset of the aforementioned set. Now, if we let x, y, be points in [c,d], we know by the MVT | f(x) - f(y)| = |f&#039;(a) (x - y)| &lt; \epsilon |(x-y)| (for some a in (x,y) Since \epsilon was arbitrary, we see this goes to zero. This shows that the distance |f(x) - f(y)| is arbitrarily small. So, now for each interval [f(x), f(y)] has a length given by the above inequality, which should go to zero as epsilon can be made arbitrarily small. So, we can make each critical value be contained in an arbitrarily small interval, which suggests that the set of critical values has measure zero.

Is that the right reasoning? Thank you so much for your help! This problem was driving me crazy, and I was approaching it previously in a far more complicated manner.
 
Almost. |f(x)-f(y)|<e*|x-y| probably isn't quite enough. But |f(x)-f(y)|<e*|d-c| or even |f(x)-f(y)|<e*|b-a| would do it. You want to bound the distance by a constant that doesn't depend on x and y. Do you see why? But those are trivial to prove. So yes, I think you've got it.
 
Since we know |f(x) - f(y)| < e|x-y| and we know x,y are in [c,d] we can then state that |x-y| < |c-d| giving us |f(x) - f(y)| < e|c-d| which doesn't depend on the variables x or y, which makes sense we'd want to bound it with a constant, not by some variable distance. This problem makes a whole lot of sense now and wasn't anywhere near as difficult as I was making it! Thanks for the help.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 26 ·
Replies
26
Views
3K