- #1
- 63
- 0
Homework Statement
Find the solution set of each of the following equations for the interval 0° ≤ x ≤ 360°.
[tex]sin^2x = sinx[/tex]
Homework Equations
Trigonometric Identities for Sine.
The Attempt at a Solution
This is my attempt so far:
[tex]\sin^2x = sinx[/tex]
[tex]\sin^2x - sinx = 0[/tex]
[tex]\sin^2x - sinx + \frac{1}{4} = \frac{1}{4}[/tex]
[tex](sinx - \frac{1}{2})^2 = \frac{1}{4}[/tex]
taking square roots of both sides:
[tex]sinx -\frac{1}{2} = \frac{1}{2}[/tex]
[tex]sinx = ±\frac{1}{2} + \frac{1}{2}[/tex]
if [itex]\frac{1}{2},[/itex]
[tex]sinx = 1[/tex]
if [itex]-\frac{1}{2},[/itex]
[tex]sinx = 0[/tex]
take arcsin of both sides:
[tex]x = arcsin1[/tex]
[tex]x = 90° or \frac{\pi}{2}[/tex]
[tex]x = arcsin0[/tex]
[tex]x = 0°[/tex]
Solution set = {0°, 90°} or {0, [itex]\frac{\pi}{2}[/itex]}
EDIT: The complete solution set must be:
x = {0°, 90°, 180°, 360°}
because sinx = 0 also in 180 and 360, not only in 0°)
Special thanks to Sourabh N for guiding me to the correct solution

Last edited: