MHB Solution to Sequence Challenge $a_n$

AI Thread Summary
The sequence is defined by the recurrence relation $a_{n+1}=\dfrac{a_n+4}{2a_n+3}$ with the initial condition $a_1=2$. A user pointed out an off-by-one error in the indexing, noting that the sequence should start at $n=1$ instead of $n=0$. This error affects the calculation of subsequent terms in the sequence. The discussion highlights the importance of correctly identifying the starting index when working with recurrence relations. The correct application of the recurrence will yield the desired sequence values.
Albert1
Messages
1,221
Reaction score
0
$a_1=2 ,$ and

$a_{n+1}=\dfrac{a_n+4}{2a_n+3},\,\, n\in N$

find :$a_n$
 
Mathematics news on Phys.org
First note that this sequence lies in $\mathbb{Q}$. Thus we can write $a_n = u_n / v_n = (u_n, v_n)$ as a two-dimensional vector for integers $u_n, v_n$. We now get:

$$a_{n + 1} = \frac{u_{n + 1}}{v_{n + 1}} = \frac{a_n + 4}{2 a_n + 3} = \frac{\frac{u_n}{v_n} + 4}{2 \frac{u_n}{v_n} + 3} = \frac{u_n + 4 v_n}{2 u_n + 3 v_n}$$

Hence we can express the recurrence as a linear transformation of the vector $(u_n, v_n)$ given by the matrix:

$$A = \left [ \begin{matrix} 1 &4 \\ 2 &3 \end{matrix} \right ]$$

Such that:

$$\left [ \begin{matrix} u_{n + 1} \\ v_{n + 1} \end{matrix} \right ] = A \left [ \begin{matrix} u_n \\ v_n \end{matrix} \right ]$$

And, more importantly for now:

$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} u_1 \\ v_1 \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ]$$

Since $a_1 = 2 = 2/1$. This matrix $A$ has eigenvalues $5$ and $-1$, with respective eigenvectors $(1, 1)$ and $(-2, 1)$. Those represent the steady states of the system, i.e. $1$ and $-2$. So we can diagonalize it as follows:

$$A = \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ]^{-1} = \frac{1}{3} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ]$$

And so by diagonalization, we have:

$$A^n = \frac{1}{3^n} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5^n &0 \\ 0 &(-1)^n \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 5^n + 2(-1)^n &2 \cdot 5^n - 2 (-1)^n \\ 5^n - (-1)^n &2 \cdot 5^n + (-1)^n \end{matrix} \right ]$$

And so:

$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 4 \cdot 5^n + 2 (-1)^n \\ 4 \cdot 5^n - (-1)^n \end{matrix} \right ]$$

We conclude (note the factor of $3^{-n}$ is present in both $u_n$ and $v_n$ and so cancels out):

$$a_n = \frac{u_n}{v_n} = \frac{4 \cdot 5^n + 2 (-1)^n}{4 \cdot 5^n - (-1)^n}$$​
 
Last edited:
according to your answer :
$a_1=\dfrac {18}{21}\neq 2$
 
Let $\text{GL}_2(\Bbb Z)$ act on $\hat{\Bbb C}$ by setting $A\cdot z := \frac{az + b}{cz + d}$, for

$$ A = \begin{pmatrix}a & b\\c & d\end{pmatrix}\in \text{GL}_2(\Bbb Z)$$

and $z\in \hat{\Bbb C}$. Let $A = \begin{pmatrix}1 & 4\\2 & 3\end{pmatrix}$. Then $a_{n+1} = A\cdot a_n$ for all $n \ge 1$. Thus $a_{n+1} = A^n\cdot a_1 = A^n \cdot 2$ for all $n \ge 1$. By diagonalization,

$$A = \begin{pmatrix}-2 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}-1 & 0\\0 & 5\end{pmatrix} \begin{pmatrix}-\frac{1}{3} & \frac{1}{3}\\\frac{1}{3} & \frac{2}{3}\end{pmatrix}.$$

Thus

$$A^n = \begin{pmatrix}-2 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}(-1)^n & 0\\0 & 5^n \end{pmatrix} \begin{pmatrix}-\frac{1}{3} & \frac{1}{3}\\\frac{1}{3} & \frac{2}{3}\end{pmatrix} = \begin{pmatrix} \frac{2(-1)^n + 5^n}{3} & \frac{2\cdot 5^n - 2(-1)^n}{3}\\\frac{5^n - (-1)^n}{3} & \frac{2\cdot 5^n + (-1)^n}{3}\end{pmatrix},$$

and

$$a_{n+1} = A^n \cdot 2 = \dfrac{2\frac{2(-1)^n + 5^n}{3} + \frac{2\cdot 5^n - 2(-1)^n}{3}}{2\frac{5^n - (-1)^n}{3} + \frac{2\cdot 5^n + (-1)^n}{3}} = \frac{4\cdot 5^n + 2(-1)^n}{4\cdot 5^n + (-1)^{n+1}},$$

for all $n \ge 1$. When $n = 0$, $\frac{4\cdot 5^n + 2(-1)^n}{4\cdot 5^n + (-1)^{n+1}} = \frac{4 + 2}{4 - 1} = \frac{6}{3} = 2 = a_1$. Hence,

$$a_n = \frac{4\cdot 5^{n-1} + 2(-1)^{n-1}}{4\cdot 5^{n-1} + (-1)^n}$$

for all $n\ge 1$.
 
Thanks you two. I wasn't aware that there was a general method for attacking such a problem.

-Dan
 
Albert said:
according to your answer :
$a_1=\dfrac {18}{21}\neq 2$

Off by one error... if you replace $n$ by $n - 1$ it works properly.. iterating the recurrence one time will give $a_2$, but I forgot the sequence started at $n = 1$, not $n = 0$.. will fix later.
 
Last edited:
Albert said:
$a_1=2 ,$ and

$a_{n+1}=\dfrac{a_n+4}{2a_n+3},\,\, n\in N$

find :$a_n$
let :
$x=\dfrac{x+4}{2x+3}---(1)$
the solutions of (1) $x=-2,1$
$\therefore \dfrac {a_{n+1}+2}{a_{n+1}-1}=-5(\dfrac {a_{n}+2}{a_{n}-1})=----=(-5)^{n}(\dfrac {a_1+2}{a_1-1})=(-5)^{n}\times 4$
and we get :
$a_n=\dfrac{4(-5)^{n-1}+2}{4(-5)^{n-1}-1}$
 

Similar threads

Replies
1
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Replies
11
Views
2K
Replies
2
Views
3K
Back
Top