First note that this sequence lies in $\mathbb{Q}$. Thus we can write $a_n = u_n / v_n = (u_n, v_n)$ as a two-dimensional vector for integers $u_n, v_n$. We now get:
$$a_{n + 1} = \frac{u_{n + 1}}{v_{n + 1}} = \frac{a_n + 4}{2 a_n + 3} = \frac{\frac{u_n}{v_n} + 4}{2 \frac{u_n}{v_n} + 3} = \frac{u_n + 4 v_n}{2 u_n + 3 v_n}$$
Hence we can express the recurrence as a linear transformation of the vector $(u_n, v_n)$ given by the matrix:
$$A = \left [ \begin{matrix} 1 &4 \\ 2 &3 \end{matrix} \right ]$$
Such that:
$$\left [ \begin{matrix} u_{n + 1} \\ v_{n + 1} \end{matrix} \right ] = A \left [ \begin{matrix} u_n \\ v_n \end{matrix} \right ]$$
And, more importantly for now:
$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} u_1 \\ v_1 \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ]$$
Since $a_1 = 2 = 2/1$. This matrix $A$ has eigenvalues $5$ and $-1$, with respective eigenvectors $(1, 1)$ and $(-2, 1)$. Those represent the steady states of the system, i.e. $1$ and $-2$. So we can diagonalize it as follows:
$$A = \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ]^{-1} = \frac{1}{3} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ]$$
And so by diagonalization, we have:
$$A^n = \frac{1}{3^n} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5^n &0 \\ 0 &(-1)^n \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 5^n + 2(-1)^n &2 \cdot 5^n - 2 (-1)^n \\ 5^n - (-1)^n &2 \cdot 5^n + (-1)^n \end{matrix} \right ]$$
And so:
$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 4 \cdot 5^n + 2 (-1)^n \\ 4 \cdot 5^n - (-1)^n \end{matrix} \right ]$$
We conclude (note the factor of $3^{-n}$ is present in both $u_n$ and $v_n$ and so cancels out):
$$a_n = \frac{u_n}{v_n} = \frac{4 \cdot 5^n + 2 (-1)^n}{4 \cdot 5^n - (-1)^n}$$