Solution to Sequence Challenge $a_n$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Challenge Sequence
Click For Summary

Discussion Overview

The discussion revolves around the recurrence relation defined by $a_1=2$ and $a_{n+1}=\dfrac{a_n+4}{2a_n+3}$, with participants attempting to find a general expression for the sequence $a_n$. The scope includes mathematical reasoning and exploration of recurrence relations.

Discussion Character

  • Mathematical reasoning, Exploratory

Main Points Raised

  • One participant presents the recurrence relation and initial condition for the sequence.
  • Another participant questions the validity of an earlier response, noting a discrepancy in the value of $a_1$ as $\dfrac{18}{21}$ instead of $2$.
  • A third participant expresses gratitude for insights shared, indicating a learning moment regarding methods for solving such problems.
  • A later reply identifies an "off by one" error in the indexing of the sequence, suggesting that the recurrence should start at $n=1$ rather than $n=0$ to align with the initial condition.
  • One participant reiterates the original recurrence relation and initial condition, suggesting a possible confusion or need for clarification.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus, as there are conflicting views regarding the correct interpretation of the initial condition and the indexing of the sequence.

Contextual Notes

There is an unresolved issue regarding the indexing of the sequence, which may affect the interpretation of the recurrence relation and the initial condition.

Albert1
Messages
1,221
Reaction score
0
$a_1=2 ,$ and

$a_{n+1}=\dfrac{a_n+4}{2a_n+3},\,\, n\in N$

find :$a_n$
 
Physics news on Phys.org
First note that this sequence lies in $\mathbb{Q}$. Thus we can write $a_n = u_n / v_n = (u_n, v_n)$ as a two-dimensional vector for integers $u_n, v_n$. We now get:

$$a_{n + 1} = \frac{u_{n + 1}}{v_{n + 1}} = \frac{a_n + 4}{2 a_n + 3} = \frac{\frac{u_n}{v_n} + 4}{2 \frac{u_n}{v_n} + 3} = \frac{u_n + 4 v_n}{2 u_n + 3 v_n}$$

Hence we can express the recurrence as a linear transformation of the vector $(u_n, v_n)$ given by the matrix:

$$A = \left [ \begin{matrix} 1 &4 \\ 2 &3 \end{matrix} \right ]$$

Such that:

$$\left [ \begin{matrix} u_{n + 1} \\ v_{n + 1} \end{matrix} \right ] = A \left [ \begin{matrix} u_n \\ v_n \end{matrix} \right ]$$

And, more importantly for now:

$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} u_1 \\ v_1 \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ]$$

Since $a_1 = 2 = 2/1$. This matrix $A$ has eigenvalues $5$ and $-1$, with respective eigenvectors $(1, 1)$ and $(-2, 1)$. Those represent the steady states of the system, i.e. $1$ and $-2$. So we can diagonalize it as follows:

$$A = \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ]^{-1} = \frac{1}{3} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5 &0 \\ 0 &-1 \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ]$$

And so by diagonalization, we have:

$$A^n = \frac{1}{3^n} \left [ \begin{matrix} 1 &-2 \\ 1 &1 \end{matrix} \right ] \left [ \begin{matrix} 5^n &0 \\ 0 &(-1)^n \end{matrix} \right ] \left [ \begin{matrix} 1 &2 \\ -1 &1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 5^n + 2(-1)^n &2 \cdot 5^n - 2 (-1)^n \\ 5^n - (-1)^n &2 \cdot 5^n + (-1)^n \end{matrix} \right ]$$

And so:

$$\left[ \begin{matrix} u_n \\ v_n \end{matrix} \right ] = A^n \left [ \begin{matrix} 2 \\ 1 \end{matrix} \right ] = \frac{1}{3^n} \left [ \begin{matrix} 4 \cdot 5^n + 2 (-1)^n \\ 4 \cdot 5^n - (-1)^n \end{matrix} \right ]$$

We conclude (note the factor of $3^{-n}$ is present in both $u_n$ and $v_n$ and so cancels out):

$$a_n = \frac{u_n}{v_n} = \frac{4 \cdot 5^n + 2 (-1)^n}{4 \cdot 5^n - (-1)^n}$$​
 
Last edited:
according to your answer :
$a_1=\dfrac {18}{21}\neq 2$
 
Let $\text{GL}_2(\Bbb Z)$ act on $\hat{\Bbb C}$ by setting $A\cdot z := \frac{az + b}{cz + d}$, for

$$ A = \begin{pmatrix}a & b\\c & d\end{pmatrix}\in \text{GL}_2(\Bbb Z)$$

and $z\in \hat{\Bbb C}$. Let $A = \begin{pmatrix}1 & 4\\2 & 3\end{pmatrix}$. Then $a_{n+1} = A\cdot a_n$ for all $n \ge 1$. Thus $a_{n+1} = A^n\cdot a_1 = A^n \cdot 2$ for all $n \ge 1$. By diagonalization,

$$A = \begin{pmatrix}-2 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}-1 & 0\\0 & 5\end{pmatrix} \begin{pmatrix}-\frac{1}{3} & \frac{1}{3}\\\frac{1}{3} & \frac{2}{3}\end{pmatrix}.$$

Thus

$$A^n = \begin{pmatrix}-2 & 1\\1 & 1\end{pmatrix} \begin{pmatrix}(-1)^n & 0\\0 & 5^n \end{pmatrix} \begin{pmatrix}-\frac{1}{3} & \frac{1}{3}\\\frac{1}{3} & \frac{2}{3}\end{pmatrix} = \begin{pmatrix} \frac{2(-1)^n + 5^n}{3} & \frac{2\cdot 5^n - 2(-1)^n}{3}\\\frac{5^n - (-1)^n}{3} & \frac{2\cdot 5^n + (-1)^n}{3}\end{pmatrix},$$

and

$$a_{n+1} = A^n \cdot 2 = \dfrac{2\frac{2(-1)^n + 5^n}{3} + \frac{2\cdot 5^n - 2(-1)^n}{3}}{2\frac{5^n - (-1)^n}{3} + \frac{2\cdot 5^n + (-1)^n}{3}} = \frac{4\cdot 5^n + 2(-1)^n}{4\cdot 5^n + (-1)^{n+1}},$$

for all $n \ge 1$. When $n = 0$, $\frac{4\cdot 5^n + 2(-1)^n}{4\cdot 5^n + (-1)^{n+1}} = \frac{4 + 2}{4 - 1} = \frac{6}{3} = 2 = a_1$. Hence,

$$a_n = \frac{4\cdot 5^{n-1} + 2(-1)^{n-1}}{4\cdot 5^{n-1} + (-1)^n}$$

for all $n\ge 1$.
 
Thanks you two. I wasn't aware that there was a general method for attacking such a problem.

-Dan
 
Albert said:
according to your answer :
$a_1=\dfrac {18}{21}\neq 2$

Off by one error... if you replace $n$ by $n - 1$ it works properly.. iterating the recurrence one time will give $a_2$, but I forgot the sequence started at $n = 1$, not $n = 0$.. will fix later.
 
Last edited:
Albert said:
$a_1=2 ,$ and

$a_{n+1}=\dfrac{a_n+4}{2a_n+3},\,\, n\in N$

find :$a_n$
let :
$x=\dfrac{x+4}{2x+3}---(1)$
the solutions of (1) $x=-2,1$
$\therefore \dfrac {a_{n+1}+2}{a_{n+1}-1}=-5(\dfrac {a_{n}+2}{a_{n}-1})=----=(-5)^{n}(\dfrac {a_1+2}{a_1-1})=(-5)^{n}\times 4$
and we get :
$a_n=\dfrac{4(-5)^{n-1}+2}{4(-5)^{n-1}-1}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K