Philosophaie
- 456
- 0
For a 2 Body Equation:
x = - \frac{1}{2} \frac{GM}{r^2}cos(\theta) cos(\phi) t^2 +v_x t + x_0
y= - \frac{1}{2} \frac{GM}{r^2} sin(\theta) cos(\phi) t^2 +v_y t + y_0
z= - \frac{1}{2} \frac{GM}{r^2} sin(\phi) t^2 +v_z t + z_0
r= sqrt(x^2 + y^2 + z^2)
\theta = atan(\frac{y}{x})
\phi = acos(\frac{z}{r})
Given:v_x, v_y, v_z, x_0, y_0, z_0 and M.
Now all I have to solve for t.
x = - \frac{1}{2} \frac{GM}{r^2}cos(\theta) cos(\phi) t^2 +v_x t + x_0
y= - \frac{1}{2} \frac{GM}{r^2} sin(\theta) cos(\phi) t^2 +v_y t + y_0
z= - \frac{1}{2} \frac{GM}{r^2} sin(\phi) t^2 +v_z t + z_0
r= sqrt(x^2 + y^2 + z^2)
\theta = atan(\frac{y}{x})
\phi = acos(\frac{z}{r})
Given:v_x, v_y, v_z, x_0, y_0, z_0 and M.
Now all I have to solve for t.