Solve an ODE using exact methods?

  • Thread starter Thread starter andycampbell1
  • Start date Start date
  • Tags Tags
    Ode
Click For Summary
The discussion centers on solving a first-order linear ordinary differential equation (ODE) using exact methods, specifically the equation dy/dx + 0.8y = 0.6e^-(0.6+0.8), with the initial condition y(0) = 1. Participants clarify that "exact methods" refer to analytical solutions rather than numerical approximations like Runge-Kutta. An integrating factor is suggested as a standard approach to solve the equation, and there is confusion about the expression e^-(0.6+0.8), prompting questions about whether it should include an x. The original poster expresses difficulty understanding the concepts and seeks further clarification on integrating factors and their application to this type of ODE. Overall, the thread highlights the challenges of grasping ODE solutions and the need for clearer explanations of the methods involved.
andycampbell1
Messages
34
Reaction score
0

Homework Statement


dy/dx + 0.8 y = 0.6 e ^-(0.6+0.8) , y(0) = 1

Solve this ordinary differential equation subject to the given condition using exact methods and evaluate the solution y for x = 0.0 (0.05) 0.5, i.e from x = 0 to x = 0.5 in steps of 0.05).

Hi, am pretty hopeless at ODEs, I do not even understand what the question means. Would someone be able to put it simply. I am not sure what exact methods are. Is this to do with runge kutta?

Any help would be great thanks!
 
Physics news on Phys.org
You do not understand what "solve the differential equation" means? It means, "find a function y(x) that satifies the differential equation and also satisfies y(0)= 1." You are then asked to evaluate that function at x= 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50.

As far as "use exact methods" is concerned, they do not want you to use any approximate or numerical method.

There are many different ways to solve that equation- it is a linear first order equation with constant coefficients. One way to solve it is to find an "integrating factor"- there is a standard formula for finding integrating factors of first order linear equations. Do you know it? Or you could find the solution to the "characteristic equation". Do you know what that is?

I do have a question about "e^-(0.6+0.8)". Was there supposed to be an "x" in there? Otherwise, why not just write "e^(-1.4)"? Was it supposed to be "e^-(0.6x+ 0.8)" or "e^-(0.6+ 0.8x)"? (The second is somewhat harder than the first.)
 
Hi sorry your probably right that it should be (1.4) there is also an x on the outside of the bracket meaning it would be e^(1.4)x. I don't know what integrating factors are. This subject is a bit of a mystery to me I've gone through the class notes about half a dozen times and I just can't seem to get my head around it I have notes on 2nd order linear odes with constant coefficients would this be similar?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
2K