Solve Boolean Algebra: A \oplus B=C, C \oplus B=A

  • Thread starter needhelp83
  • Start date
In summary, if A \oplus B=C, then C \oplus B=A, and A \oplus C=B (use substitution), the correct substitution steps are shown to be A = A.
  • #1
needhelp83
199
0
if [tex]A \oplus B=C[/tex], then [tex]C \oplus B=A[/tex], and [tex]A \oplus C=B[/tex] (use substitution)

[tex]C \oplus B=A[/tex]

[tex]C \overline{B} + \overline{C} B = A[/tex]

[tex](A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A[/tex]

[tex](A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A[/tex]

[tex]A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A[/tex]

[tex]AB + 0 + AB + 0 = A[/tex]

AB = A

I don't know how to get A = A

Any help?
 
Last edited:
Physics news on Phys.org
  • #2
needhelp83 said:
if [tex]A \oplus B=C[/tex], then [tex]C \oplus B=A[/tex], and [tex]A \oplus C=B[/tex] (use substitution)

[tex]C \oplus B=A[/tex]

[tex]C \overline{B} + \overline{C} B = A[/tex]

[tex](A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A[/tex]

[tex](A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A[/tex]

[tex]A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A[/tex]

[tex]AB + 0 + AB + 0 = A[/tex]

AB = A

Am I doing the steps correctly?
 
  • #3
Anybody know how to solve
 
  • #4
needhelp83 said:
if [tex]A \oplus B=C[/tex], then [tex]C \oplus B=A[/tex], and [tex]A \oplus C=B[/tex] (use substitution)

[tex]C \oplus B=A[/tex]

[tex]C \overline{B} + \overline{C} B = A[/tex]

[tex](A \oplus B) \overline{B} + (\overline {A \oplus B}) B = A[/tex]

[tex](A \overline{B} + \overline {A} B ) \overline {B} + (AB+ \overline{A} \overline{B})B=A[/tex]

[tex]A \overline{B} \overline {B} + \overline {A} B \overline{B} + ABB + \overline{A} \overline{B}B=A[/tex]

[tex]AB + 0 + AB + 0 = A[/tex]

AB = A

I don't know how to get A = A

Any help?

You made a mistake in line 6. You should have:
[tex]A\overline{B} + 0 + AB + 0 = A[/tex]

[tex]A(\overline{B} + B) = A[/tex]

[tex]A.1 = A[/tex]

[tex]A = A[/tex]
 

FAQ: Solve Boolean Algebra: A \oplus B=C, C \oplus B=A

1. What is Boolean Algebra?

Boolean Algebra is a branch of mathematics that deals with logical operations and variables. It is used to simplify and analyze logical expressions, such as statements and equations, using operators such as AND, OR, and NOT.

2. What does the symbol \oplus mean in Boolean Algebra?

The symbol \oplus represents the XOR (exclusive OR) operation in Boolean Algebra. It results in a TRUE value only when one of the inputs is TRUE, but not both.

3. How do I solve equations in Boolean Algebra?

To solve equations in Boolean Algebra, you can use a truth table or apply the laws and rules of Boolean Algebra. In the equation A \oplus B = C, you can rearrange it to isolate one variable and then substitute the values of the other variables to find the solution.

4. How is Boolean Algebra used in computer science?

Boolean Algebra is used in computer science to design and analyze logic circuits and programming languages. It allows for the creation of complex logical expressions and decision-making processes, which are essential for computing systems.

5. What is the significance of the equation A \oplus B = C in Boolean Algebra?

The equation A \oplus B = C represents the principle of "one or the other, but not both" in Boolean Algebra. It is useful in designing logical circuits and statements that require a binary decision or outcome.

Back
Top