Solve Derivative: Tips & Strategies

  • Thread starter Thread starter kyu
  • Start date Start date
  • Tags Tags
    Derivative
kyu
Messages
12
Reaction score
0


how should i go on?
 

Attachments

  • lim.jpg
    lim.jpg
    3.3 KB · Views: 436
  • 2014-06-24 20.15.32.jpg
    2014-06-24 20.15.32.jpg
    19.5 KB · Views: 499
Physics news on Phys.org
The second line is wrong.

ehild
 
oops i forgot the minus sign.. what should i do after that?
 
Multiply both numerator and denominator by 1/√3+1/(√3+x2).

And please type in your work.

ehild
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top