Solve equation from dimensional analysis: 3 eq., 6 unknowns

Click For Summary
SUMMARY

The discussion centers on the dimensional analysis of thrust in marine propellers, as derived by Carlton. The key parameters influencing thrust include diameter (D), speed of advance (Va), rotational speed (n), fluid density (ρ), fluid viscosity (μ), and static pressure (p0-e). The dimensional equations yield relationships for mass, length, and time, leading to the final equation T = ρn²D⁴(Va/nD)ᶜ(μ/ρnD²)ᶠ((p0-e)/pn²D²)ᵍ. The user expresses confusion regarding the determination of constants c, f, and g, given the three equations and six unknowns, ultimately concluding that these constants may equal zero, which raises questions about the validity of this solution.

PREREQUISITES
  • Understanding of dimensional analysis in physics
  • Familiarity with fluid dynamics concepts
  • Knowledge of marine propulsion systems
  • Ability to solve algebraic equations with multiple variables
NEXT STEPS
  • Research the principles of dimensional analysis in fluid mechanics
  • Study the relationship between thrust and propeller design parameters
  • Explore methods for solving systems of equations with multiple unknowns
  • Investigate the significance of non-dimensional numbers in fluid dynamics
USEFUL FOR

Students and professionals in engineering, particularly those focused on fluid dynamics, marine engineering, and propulsion system design, will benefit from this discussion.

phillip_at_work
Messages
13
Reaction score
2
TL;DR
Text book conducts dimensional analysis to derive an equation. Analysis involves 6 variables and 3 basic units (mass M, length L, and time T). This results in three equations and six unknowns. The final equation can be solved using three of those unknowns. However, with only three equations, I don't see how to find those three unknowns to actually get a solution for the derived equation. Text: Carlton 2007, Marine Propellers and Propulsion p89.
Carlton writes on page 89:
"The thrust of a marine propeller... may be expected to depend upon the following parameters:
(a) The diameter (D)
(b) the speed of advance (Va)
(c) The rotational speed (n)
(d) The density of the fluid (ρ)
(e) The viscosity of the fluid (μ)
(f) The static pressure of the fluid at the propeller station (p0-e)"

What follows is Carlton's derivation:

T ∝ ρaDbVacndμf(p0-e)g

And by dimensional analysis, we get:

MLT-2 = (ML-3)aLb(LT-1)c(T-1)d(ML-1T-1)f(ML-1T-2)g

which results in the following equations:

for mass M: 1 = a + f + g
for length L: 1 = -3a + b + c - f - g
for time T: -2 = -c - d - f - 2g

and hence:

a = 1 - f - g
b = 4 - c - 2f -g
d = 2 - c - f - 2g

And so that proportion can be updated to be:

T ∝ ρ (1-f-g) D (4-c-2f-g)Vacn(2-c-f-2g)μf(po-e)g

For the final equation as:

T = ρn2D4(Va/ nD)c* (μ / ρnD2)f* ( (p0-e) / pn2D2)g

I can follow this derivation without issue. What is confusing is how I solve for T. How can I know the values of `c`, `f`, and `g` as I have three equations and six unknowns? What am I missing?
 
Physics news on Phys.org
I think I solved my own question. Happy for feedback.

Constant exponents are derived for ρa, nd and Db. These are ρ1, n2, and D4.

That is, a=1, d=2, and b=4. If I apply these to the system of three equations:

a = 1 = 1 - f - g
b = 4 = 4 - c - 2f -g
d = 2 = 2 - c - f - 2g

I compute,

g = f = c = 0

Which feels incorrect, but perhaps I'm over thinking. If this was correct, I'm not sure why Carlton wouldn't write this solution in the chapter, which s/he does not. Any feedback is much appreciated.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
568