MHB Solve exponential equation x^4 = (5x+6)^2

  • Thread starter Thread starter ketanco
  • Start date Start date
  • Tags Tags
    Exponential
AI Thread Summary
The discussion revolves around solving the exponential equation x^4 = (5x + 6)^2 and finding the multiplication product of all possible values of x. The initial attempts included taking square roots and using absolute values, leading to potential solutions of 6, 1, and -1, but these were deemed insufficient. The correct factorization of the equation reveals four solutions: -3, -2, -1, and 6. The multiplication product of these values is calculated to be -36. The conversation also touches on the validity of using absolute values in the solution process.
ketanco
Messages
15
Reaction score
0
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36
 
Mathematics news on Phys.org
ketanco said:
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36

$x^4 - (5x+6)^2 = 0$

$[x^2 - (5x+6)] \cdot [x^2 + (5x+6)] = 0$

$[(x-6)(x+1)] \cdot [(x+2)(x+3)] = 0$

$x \in \{-3,-2,-1,6 \}$
 
great, and thanks

and what if we tried to solve with absolute value like i tried by taking square roots of both sides? can it be done?

if so how?

if not why not?
 
$\sqrt{x^4} = \sqrt{(5x+6)^2}$

$|x^2| = |5x+6|$note ... $|x^2| = x^2$

$|5x+6| = 5x+6$ if $5x+6 \ge 0$

$|5x+6| = -(5x+6)$ if $5x+6 < 0$case 1

$x^2 = 5x + 6$ if $5x+6 \ge 0 \implies x \ge -\dfrac{6}{5}$

$x^2 - 5x - 6 = 0$

$(x-6)(x+1) = 0$ ... both zeros are $\ge -\dfrac{6}{5}$case 2

$x^2 = -(5x+6)$ if $5x+6 < 0 \implies x < -\dfrac{6}{5}$

$x^2 + 5x + 6 = 0$

$(x+3)(x+2) = 0$ ... both zeros are $< -\dfrac{6}{5}$
 
ketanco said:
x^4 = (5x+6)^2

then what is the multiplication product of all values x can take?

i tried taking square roots of each and wrote in absolute value and found 6, 1, -1 (may be wrong) already but there must be more or different because it is not even in answer choices and the answer should be -36

xxxx-(5x+6)(5x+6)=0
xxxx-25xx-60x-36=0
(x-a1)(x-a2)(x-a3)(x-a4)=0

a1a2a3a4 = ?
 
RLBrown said:
xxxx-(5x+6)(5x+6)=0
xxxx-25xx-60x-36=0
(x-a1)(x-a2)(x-a3)(x-a4)=0

a1a2a3a4 = ?

$x^4 - 25x^2 - 60x - 36 = 0$

try using the rational root theorem ...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
2
Views
2K
Replies
18
Views
3K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
7
Views
3K
Replies
10
Views
2K
Back
Top