Telemachus
- 820
- 30
Homework Statement
Hi. Well, I need some help with this problem. I have to solve
x(1-x)y''+2(1-2x)y'-2y=0 (1)
Using Frobenius method around zero. So proposing y=\Sigma_{n=0}^\infty a_n x^{n+\alpha}, differentiating and replacing in (1):
x(1-x)y''+2(1-2x)y'-2y=
=\Sigma_{n=0}^\infty a_n(n+\alpha)(n+\alpha-1)x^{n+\alpha-1}- \Sigma_{n=0}^\infty a_n(n+\alpha)(n+\alpha-1)x^{m+\alpha} + 2 \Sigma_{n=0}^\infty a_n(n+\alpha)x^{n+\alpha-1} -4 \Sigma_{n=0}^\infty a_n(n+\alpha)x^{n+\alpha}-2 \Sigma_{n=0}^\infty a_n n^{n+\alpha}=0
Regrouping and working a little bit this becomes:
a_0\alpha(\alpha+1)+\Sigma_{n=1}^\infty a_n(n+\alpha)(n+\alpha+1)x^{n+\alpha-1}- \Sigma_{n=0}^\infty a_n [(n+\alpha)^2+2]x^{n+\alpha}
I think this is fine, because the indicial equation I get gives the same roots from the other method: \alpha(\alpha-1)+p_0\alpha+q_0=0
Then \alpha_1=0,\alpha_2=-1
So I have:
a_0\alpha(\alpha+1)+\Sigma_{n=0}^\infty a_{n+1}(n+\alpha+1)(n+\alpha+2)x^{n+\alpha}- \Sigma_{n=0}^\infty a_n [(n+\alpha)^2+2]x^{n+\alpha}
And then a_{n+1}(n+\alpha+1)(n+\alpha+2)-a_n[(n+\alpha)^2+2]=0]<br /> So for \alpha_1=0<br /> <br /> a_{n+1}=\frac{a_n[n^2+2]}{(n+1)(n+2)}<br /> <br /> The thing is I've tried some iterations but I can't get a expression for a_k in terms of a_0. How should I do this?