Understanding the Frobenius Method for Solving Second Order ODEs

Click For Summary
The discussion focuses on applying the Frobenius method to solve a second-order ordinary differential equation (ODE) related to Bessel functions. Participants clarify the series expansion starting from k=0 instead of k=-∞ and emphasize the importance of correctly identifying coefficients in the power series. A key point of confusion is the condition leading to a_1=0 when c=n, which arises from the indicial equation. The conversation also touches on the recurrence relations for coefficients a_k, with specific formulas derived for even and odd indices. Overall, the thread highlights the intricacies of the Frobenius method and the need for careful attention to detail in mathematical derivations.
  • #31
chwala said:
This is the part that i need understanding ...lets assume as you have put it that ##k## starts from ##0→+∞## then how is it that when ##k=1##, that ##a_1=0##
or the other possibility is that my statement (my notes) is/are incorrect.
I still do not understand your question here, and it looks to me that no one else has understood it either, which is why you are not getting a satisfactory answer.
What do you mean "when k=1"? As I wrote in post #23, that is not a 'case'.
I also suggested dropping c, so let's do that. You have ##z^2y''+zy'+y(z^2-n^2)=0## and ##y=\Sigma_{k=0}a_kz^k##.

##z^0: a_0n^2=0##
##z^1: a_1(1-n^2)=0##
##z^k, k>1: a_k(k^2-n^2)+a_{k-2}=0##

From this we get to deduce:
##a_n## can be chosen arbitrarily.
##a_k=0## if either k<n or k+n is odd.
##a_{n+2}=-\frac{a_n}{4n+4}##
Etc.

If I have not answered your question, please rephrase it in terms of that analysis.
 
  • Like
Likes chwala
Physics news on Phys.org
  • #32
thanks for your asking haruspex, i asked in post 1 on how ##a_1=0##, that was my question, ...and i now know why as shown in my post 25 and also more insight has been given by benorin in post 28. My question has been answered fully sir.
 
  • #33
haruspex said:
I still do not understand your question here, and it looks to me that no one else has understood it either, which is why you are not getting a satisfactory answer.
What do you mean "when k=1"? As I wrote in post #23, that is not a 'case'.
I also suggested dropping c, so let's do that. You have ##z^2y''+zy'+y(z^2-n^2)=0## and ##y=\Sigma_{k=0}a_kz^k##.

##z^0: a_0n^2=0##
##z^1: a_1(1-n^2)=0##
##z^k, k>1: a_k(k^2-n^2)+a_{k-2}=0##

From this we get to deduce:
##a_n## can be chosen arbitrarily.
##a_k=0## if either k<n or k+n is odd.
##a_{n+2}=-\frac{a_n}{4n+4}##
Etc.

If I have not answered your question, please rephrase it in terms of that analysis.
Thanks haruspex, this is more clearer
 
  • #34
@haruspex the problem stated to use the Frobenius method which is where the ##c## comes from.
 
  • Like
Likes chwala

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K